论文作者:Miaomiao Cai,Simiao Li,Wei Li,Xudong Huang,Hanting Chen,Jie Hu,Yunhe Wang
作者单位:University of Science and Technology of China;Huawei Noah’s Ark Lab
论文链接:http://arxiv.org/abs/2504.15176v1
内容简介:
1)方向:图像超分辨率(Image Super-Resolution, ISR)
2)应用:图像超分辨率(Image Super-Resolution, ISR)
3)背景:尽管扩散模型在真实世界图像超分辨率方面取得了一定的进展,但现有方法缺乏有效的人类反馈集成,可能导致生成图像与人类偏好不一致,甚至产生伪影、幻觉或有害内容。因此,引入人类偏好对齐成为提升图像生成质量的重要方向,尤其是在语言模型和文本到图像生成等任务中已有应用。
4)方法:为了弥补现有方法的不足,首次将人类偏好对齐技术引入Real-ISR,并提出了直接偏好优化(Direct Preference Optimization, DPO)方法。DPO通过直接学习人类偏好数据集来实现生成图像与人类偏好的对齐。然而,由于Real-ISR的像素级重建目标与图像级偏好之间存在差异,DPO可能过于敏感于局部异常,从而影响生成质量。为了解决这一问题,本文提出了直接语义偏好优化(Direct Semantic Preference Optimization, DSPO)方法,结合语义指导,通过两种策略来实现实例级人类偏好对齐:(a)语义实例对齐策略,确保细粒度感知一致性;(b)用户描述反馈策略,通过语义文本反馈缓解幻觉问题。
5)结果:实验结果表明,DSPO作为一种即插即用的解决方案,在一阶段和多阶段超分辨率框架中均表现出极高的有效性,显著提升了生成图像的质量和与人类偏好的对齐度。