常见经典目标检测算法

本文介绍了目标检测的基本概念,核心问题以及Two stage和One stage目标检测算法的区分。重点讨论了R-CNN系列,包括R-CNN的创新点,如CNN特征提取和SVM分类,以及Fast R-CNN的改进,如RoI Pooling层的应用,以提高检测速度和效率。
摘要由CSDN通过智能技术生成

1、目标检测基本概念 1.1 什么是目标检测

目标检测(Object Dectection)的任务是图像中所有感兴趣的目标(物体),确定他们的类别和位置。

1.2 目标检测要解决的核心问题

除图像分类外,目标检测要解决的核心问题是:
1.目标可能出现在图像的任何位置。
2.目标右各种不同的大小。
3.目标可能有各种不同的形状。

1.3 目标检测算法分类

Two stage目标检测算法
先进行区域生成(region proposal,RP)(一个可能包含待检测物体的预选框),再通过卷积神经网络进行样本分类。
任务:特征提取->生成RP->分类/定位回归。
常见Two stage目标检测算法有:R-CNN、SPP-Net、Fast R-CNN和R-FCN等。
One stage 目标检测算法
不用RP,直接在网络中提取特征来预测物体分类和位置。
任务:特征提取->分类/定位回归。
常见的one stage目标检测算法有:OverFeat、YOLOv1、YOLOv3、SSD和RetinaNet等。
1.4 应用领域

人脸检测
行人检测
车辆检测
道路检测
障碍物检测
等等
2、Two stage 目标检测算法 2.1 R-CNN 2.1.1 R-CNN 创新点

使⽤CNN(ConvNet)对 region proposals 计算 feature vectors。从经验驱动特征(SIFT、HOG)到数据驱动特征(CNN feature map),提⾼特征对样本的表⽰能⼒。
采⽤⼤样本下(ILSVRC)有监督预训练和⼩样本(P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值