Greatest Common Increasing Subsequence

This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.

Input

Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.

Output

output print L - the length of the greatest common increasing subsequence of both sequences.

Sample Input

1

5
1 4 2 5 -12
4
-12 1 2 4

Sample Output

2

题意:
求最长公共上升子序列的长度。
思路:采用dp思想,f[i][j]表示第一个序列的前i个元素和第二个序列的前j个元素的最长上升公共子序列 
状态转移方程:
①f[i][j] =f[i-1][j] (a[i] != b[j])
②f[i][j] = max(f[i-1][k]+1) (1 <= k <= j-1 && b[j] > b[k])
代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int f[2000][2000];
int main()
{
    int k,n,m,i,j,max;
    int a[600],d[600];
    scanf("%d",&k);
    while(k--)
    {
        scanf("%d",&m);
        for(i=1; i<=m; i++)
            scanf("%d",&a[i]);
        scanf("%d",&n);
        for(j=1; j<=n; j++)
            scanf("%d",&d[j]);
        memset(f,0,sizeof(f));
        for(i=1; i<=m; i++)
        {
            max=0;
            for(j=1; j<=n; j++)
            {
                f[i][j]=f[i-1][j];
                if(a[i]>d[j]&&max<f[i-1][j])
                    max=f[i-1][j];
                if(a[i]==d[j])
                    f[i][j]=max+1;
            }
        }
        max=0;
        for(i=1; i<=n; i++)
            if(max<f[m][i])
                max=f[m][i];
        printf("%d\n",max);
        if(k!=0)
            printf("\n");
    }
    return 0;
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值