机器学习实战第二章——KNN算法(源码解析)

机器学习实战中的内容讲的都比较清楚,一般都能看懂,这里就不再讲述了,这里主要是对代码进行解析,如果你很熟悉python,这个可以不用看。

#coding=utf-8
'''
Created on 2015年12月29日

@author: admin
'''
from numpy import array
from numpy import tile
from numpy import zeros
import operator
from os import listdir

# 创建数据集,并返回数据集和分类标签
def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group,labels

# 对新数据进行分类
def classify0(inX,dataSet,labels,k):
    #dataSet.shape[0]是dataSet第一维的数目
    dataSetSize = dataSet.shape[0] 
    #要分类的新数据与原始数据做差
    diffMat = tile(inX,(dataSetSize,1)) - dataSet
    #求差的平方
    sqDiffMat = diffMat**2
    #求差的平方的和
    sqDistance = sqDiffMat.sum(axis=1) 
    #求标准差
    distances = sqDistance**0.5
    #距离排序
    sortDistIndicies = distances.argsort() 
    #定义元字典
    classCount = {} 
    #遍历前k个元素
    for i in range(k):
        #获得前k个元素的标签
        voteIlabel = labels[sortDistIndicies[i]]
        #计算前k个数据标签出现的次数
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 
    #对得到的标签字典按降序排列
    sortedClassCount =sorted(classCount.iteritems(),key = operator.itemgetter(1),reverse = True)
    #返回出现次数最多的标签
    return sortedClassCount[0][0]

# 读取文本文件中的数据
def file2matrix(filename):
    # 打开文件
    fr = open(filename)
    # 计算文本文件的行数
    numberOfLines = len(fr.readlines())
    # 创建返回的数据矩阵
    returnMat = zeros((numberOfLines,3))
    # 创建类标签
    classLabelVector = []
    # 打开文件
    fr = open(filename)
    # 定义索引
    index = 0
    # 读取文件的每一行并处理
    for line in fr.readlines():
        # 去除行的尾部的换行符
        line = line.strip()
        # 将一行数据按空进行分割
        listFromLine = line.split('\t')
        # 0:3列为数据集的数据
        returnMat[index,:] = listFromLine[0:3]
        # 最后一列为数据的分类标签
        classLabelVector.append(int(listFromLine[-1]))
        # 索引加1
        index += 1
    # 返回数据集和对应的类标签
    return returnMat,classLabelVector

# 归一化函数
def autoNorm(dataSet):
    # 求数据矩阵每一列的最小值
    minVals = dataSet.min(0)
    # 求数据矩阵每一列的最大值
    maxVals = dataSet.max(0)
    # 求数据矩阵每一列的最大最小值差值
    ranges = maxVals - minVals
#    normDataSet = zeros(shape(dataSet))
    # 返回数据矩阵第一维的数目
    m = dataSet.shape[0]
    # 求矩阵每一列减去该列最小值,得出差值
    normDataSet = dataSet - tile(minVals,(m,1))
    # 用求的差值除以最大最小值差值,即数据的变化范围,即归一化
    normDataSet = normDataSet / tile(ranges,(m,1))
    # 返回归一化后的数据,最大最小值差值,最小值
    return normDataSet,ranges,minVals

# 分类器测试函数
def datingClassTest():
    # 测试集所占的比例
    hoRatio = 0.10
    # 从文件中读取数据
    datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
    # 对数据进行归一化
    normMat,ranges,minVals = autoNorm(datingDataMat)
    # 求数据的条数
    m = normMat.shape[0]
    # 求测试集的数据数目
    numTestVecs = int(m*hoRatio)
    # 定义误判数目
    errorCount = 0.0
    # 对测试数据进行遍历
    for i in range(numTestVecs):
        # 对每一条数据进行分类
        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],2)
        # 输出分类结果和实际的类别
        print "the classifer came back with: %d,the real answer is: %d" %(classifierResult,datingLabels[i])
        # 如果分类结果与实际结果不一致
        if(classifierResult != datingLabels[i]):
            # 误分类数加1
            errorCount += 1.0
    # 输出错误率
    print "the total error rate is: %f" %(errorCount/float(numTestVecs))

# 对人分类
def classiyPerson():
    # 定义分类结果的类别
    resultList = ['not at all','in small doses','in large doses']
    # 读取输入数据
    percentTats = float(raw_input("percentage of time spent playing video games?"))
    # 读取输入数据
    ffMiles = float(raw_input("frequent flier miles earned per year?"))
    # 读取输入数据
    iceCream = float(raw_input("liters of ice cream consumed per year?"))
    # 从文件中读取已有数据
    datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
    # 对数据进行归一化
    normMat,ranges,minVals = autoNorm(datingDataMat)
    # 将单个输入数据定义成一条数据
    inArr =array([ffMiles,percentTats,iceCream])
    # 对输入数据进行分类
    classifierResult = classify0(inArr,datingDataMat,datingLabels,3)
    # 输出预测的分类类别
    print "You will probably like this person:",resultList[classifierResult - 1]

# 将单个手写字符文件变成向量 
def img2vector(filename):
    # 定义要返回的向量
    returnVect = zeros((1,1024))
    # 打开文件
    fr = open(filename)
    # 遍历文件中的每一行和每一列
    for i in range(32):
        # 读取一行
        lineStr = fr.readline()
        # 对读取数据赋值到returnVect中
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    # 返回向量
    return returnVect
# 手写字符识别测试
def handwritingClassTest():
    # 定义手写字符标签(类别)
    hwLabels = []
    # 列出目录下所有的文件
    trainingFileList = listdir('digits/trainingDigits')
    # 计算文件的数目
    m = len(trainingFileList)
    # 定义手写字符数据矩阵
    trainingMat = zeros((m,1024))
    # 依次读取每个文件
    for i in range(m):
        # 定义文件名
        fileNameStr = trainingFileList[i]
        # 对文件名进行分割
        fileStr = fileNameStr.split('.')[0]
        # 获得文件名中的类标签
        classNumStr = int(fileStr.split('_')[0])
        # 把类标签放到hwLabels中
        hwLabels.append(classNumStr)
        # 把文件变成向量并赋值到trainingMat中
        trainingMat[i,:] = img2vector('digits/trainingDigits/%s' % fileNameStr)
    # 列出测试目录下的所有文件
    testFileList = listdir('digits/testDigits')
    # 定义错误率
    errorCount = 0.0
    # 定义测试文件数目
    mTest = len(testFileList)
    # 遍历测试
    for i in range(mTest):
        # 定义测试文件名
        fileNameStr = testFileList[i]
        # 对测试文件名进行分割
        fileStr = fileNameStr.split('.')[0]
        # 获得测试文件的类标签
        classNumStr = int(fileStr.split('_')[0])
        # 将测试文件转换成向量
        vectorUnderTest = img2vector('digits/testDigits/%s' % fileNameStr)
        # 进行分类
        classifierResult = classify0(vectorUnderTest,trainingMat,hwLabels,3)
        # 输出预测类别和实际类别
        print "the classifier came back with:%d,the real answer is %d" % (classifierResult,classNumStr)
        # 如果二者不一致,累加错误数量
        if(classifierResult != classNumStr):
            errorCount += 1.0
    # 输出分类错误的数目
    print "\nthe total number of errors is:%d" % errorCount
    # 输出分类的错误率
    print "\nthe total error rate is:%f" % (errorCount/float(mTest))

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值