YOLOv7是一种广泛应用于计算机视觉领域的目标检测算法。为了进一步提升YOLOv7的性能和准确率,我们将ConvNeXt结构与YOLOv7相结合,构建了CNeB模块。本文将详细介绍这一改进的方法,并提供相应的源代码。
引言
目标检测是计算机视觉中的重要任务之一,其在自动驾驶、视频监控、人脸识别等领域具有广泛的应用。YOLOv7是目标检测中的一种经典算法,其以快速和准确的特点受到了广泛关注。然而,YOLOv7在处理小目标和密集目标时存在一定的局限性。为了解决这一问题,我们将ConvNeXt结构引入YOLOv7,构建了CNeB模块,以提升目标检测的性能。
ConvNeXt结构
ConvNeXt是一种用于卷积神经网络的结构,其通过组合多个卷积分支来增强特征表示能力。每个卷积分支具有不同的感受野和参数组合,从而提取多尺度的特征。这种多分支结构有助于捕捉目标的多样性和复杂性。
CNeB模块
为了将ConvNeXt结构应用于YOLOv7,我们构建了CNeB模块。CNeB模块由以下几个部分组成:
-
输入特征图:CNeB模块接收来自YOLOv7的输入特征图作为输入。
-
ConvNeXt结构:我们将ConvNeXt结构嵌入CNeB模块,以增强特征表示能力。具体而言,我