改进YOLOv7系列:结合ConvNeXt优化YOLOv7的计算机视觉模型

本文介绍了如何通过结合ConvNeXt结构改进YOLOv7,构建CNeB模块,以提升目标检测算法在处理小目标和密集目标时的性能和准确率。实验表明,CNeB模块有效增强了特征表示能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv7是一种广泛应用于计算机视觉领域的目标检测算法。为了进一步提升YOLOv7的性能和准确率,我们将ConvNeXt结构与YOLOv7相结合,构建了CNeB模块。本文将详细介绍这一改进的方法,并提供相应的源代码。

引言

目标检测是计算机视觉中的重要任务之一,其在自动驾驶、视频监控、人脸识别等领域具有广泛的应用。YOLOv7是目标检测中的一种经典算法,其以快速和准确的特点受到了广泛关注。然而,YOLOv7在处理小目标和密集目标时存在一定的局限性。为了解决这一问题,我们将ConvNeXt结构引入YOLOv7,构建了CNeB模块,以提升目标检测的性能。

ConvNeXt结构

ConvNeXt是一种用于卷积神经网络的结构,其通过组合多个卷积分支来增强特征表示能力。每个卷积分支具有不同的感受野和参数组合,从而提取多尺度的特征。这种多分支结构有助于捕捉目标的多样性和复杂性。

CNeB模块

为了将ConvNeXt结构应用于YOLOv7,我们构建了CNeB模块。CNeB模块由以下几个部分组成:

  1. 输入特征图:CNeB模块接收来自YOLOv7的输入特征图作为输入。

  2. ConvNeXt结构:我们将ConvNeXt结构嵌入CNeB模块,以增强特征表示能力。具体而言,我

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值