【详细版】GBDT+LR 的模型结构

Facebook 提出了一种利用GBDT自动进行特征筛选和组合,进而生成新的离散特征向量,再把该特征向量当作LR模型输入,预估CTR的模型结构(如图 2-15 所示)。

GBDT是由多棵回归树组成的树林,后一棵树以前面树林的结果与真实结果的残差为拟合目标。每棵树生成的过程是一棵标准的回归树生成过程,因此回归树中每个节点的分裂是一个自然的特征选择的过程,而多层节点的结构则对特征进行了有效的自动组合,也就非常高效地解决了过去棘手的特征选择和特征组合的问题。

利用训练集训练好GBDT模型之后,就可以利用该模型完成从原始特征向量到新的离散型特征向量的转化。具体过程如下,
一个训练样本在输人GBDT的某一子树后,会根据每个节点的规则最终落入某一叶子节点,把该叶子节点置为1,其他叶子节点置为0,所有叶子节点组成的向量即形成了该棵树的特征向量,把GBDT所有子树的特征向量连接起来,即形成了后续 LR 模型输入的离散型特征向量。

事实上,决策树的深度决定了特征交叉的阶数。如果决策树的深度为4,则通过3次节点分裂,最终的叶节点实际上是进行三阶特征组合后的结果,如此强的特征组合能力显然是FM系的模型不具备的。但GBDT容易产生过拟合,以及GBDT的特征转换方式实际上丢失了大量特征的数值信息,因此不能简单地说GBDT的特征交叉能力强,效果就比FFM好,在模型的选择和调试上,永远都是多种因素综合作用的结果。

GBDT+LR 组合模型对于推荐系统领域的重要性在于,它大大推进了特征工程模型化这一重要趋势。在GBDT+LR组合模型出现之前,特征工程的主要解决方法有两个:一是进行人工的或半人工的特征组合和特征筛选;二是通过改造目标函数,改进模型结构,增加特征交叉项的方式增强特征组合能力。但这两种方法都有弊端,第一种方法对算法工程师的经验和精力投入要求较高;第二种方法则要求从根本上改变模型结构,对模型设计能力的要求较高。
GBDT+LR 组合模型的提出,意味着特征工程可以完全交由一个独立的模型来完成,模型的输入可以是原始的特征向量,不必在特征工程上投入过多的人工筛选和模型设计的精力,实现真正的端到端(EndtoEnd)训练。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值