金融风控
文章平均质量分 61
智能风控实践相关:包括从模型、特征到决策等
蕊在花中羞涩
起点低,当下净,回头脏,平常路
展开
-
【详细版】LS-PLM 的模型结构
在逻辑回归的基础上加入聚类的思想,其灵感来自对广告推荐领域样本特点的观察。在实践中,阿里巴巴给出的m的经验值为12。本质上,LS-PLM可以看作对逻辑回归的自然推广,它在逻辑回归的基础上采用分而治之的思路,先对样本进行分片,再在样本分片中应用逻辑回归进行CTR预估。(1)端到端的非线性学习能力:LS-PLM 具有样本分片的能力,因此能够挖掘出数据中蕴藏的非线性模式,省去了大量的人工样本处理和特征工程的过程使 LS-PLM 算法可以端到端地完成训练,便于用一个全局模型对不同应用领域业务场景进行统一建模。原创 2024-09-18 20:53:18 · 222 阅读 · 0 评论 -
【详细版】GBDT+LR 的模型结构
GBDT是由多棵回归树组成的树林,后一棵树以前面树林的结果与真实结果的残差为拟合目标。每棵树生成的过程是一棵标准的回归树生成过程,因此回归树中每个节点的分裂是一个自然的特征选择的过程,而多层节点的结构则对特征进行了有效的自动组合,也就非常高效地解决了过去棘手的特征选择和特征组合的问题。GBDT+LR 组合模型的提出,意味着特征工程可以完全交由一个独立的模型来完成,模型的输入可以是原始的特征向量,不必在特征工程上投入过多的人工筛选和模型设计的精力,实现真正的端到端(EndtoEnd)训练。原创 2024-09-18 20:40:55 · 295 阅读 · 0 评论 -
【数据分析】金融通用场景下的数据基础分析方法
原创 2024-09-18 20:32:07 · 105 阅读 · 0 评论 -
【数据分析】金融通用场景下的数据基础分析方法
原创 2024-09-02 21:25:09 · 105 阅读 · 0 评论 -
【风控策略开发】反欺诈Louvain算法的Python代码
Louvain算法是一种基于无向图(在社交网络中,将边没有方向的图称为无向图,边有方向的图称为有向图)的“社区”发现算法,其基本思想是先将每一个节点作为一个独立的社区,再分别计算各个节点加入其他社区后的模块度(Modularity)增量,从中选出模块度最高的一个邻居节点,合并为一个社区,待所有节点所属的社区不再变化后,将合并后的社区看成一个新的节点,重复上述过程,直到模块度不再增大。选取的节点及确定的节点之间的关系决定了要构建的网络结构,若构建的网络不合理,则最终构建的模型效果也不会很好。原创 2024-08-13 20:19:51 · 803 阅读 · 0 评论 -
【风控策略开发】反欺诈之基于社交网络识别欺诈团伙
需要强调的是,在反欺诈过程中,识别和拦截欺诈团伙往往是反欺诈工作的重中之重,因为欺诈团伙性质非常恶劣,且一旦欺诈成功,往往会给金融机构带来难以估量的损失,所以开发有效的识别团伙欺诈的反欺诈模型显得尤为重要。在风控过程中,主要通过反欺诈策略识别和拦截欺诈。2)构建针对欺诈客户、欺诈设备、欺诈电话、欺诈IP地址、欺诈GPS等的欺诈黑名单库,在授信申请、用信申请等流程中拦截欺诈客户的申请。在反欺诈过程中,反欺诈模型是精准识别欺诈的利器,在反欺诈模型开发完成后,主要由反欺诈策略利用反欺诈模型结果精准拦截欺诈。原创 2024-08-13 20:06:02 · 827 阅读 · 0 评论 -
【风控策略】策略和模型的区别与联系
在整个风控过程中,基于不同的风控场景,需要设计不同的风控策略,常见的有授信审批策略、定额定价策略、调额调价策略、催收策略等,但是,无论是什么类型的策略,策略的全生命周期管理都是一样的。风控策略是指策略开发人员基于风控政策、业务场景、风控抓手,针对目标客群,通过一系列规则的设计、组合和应用,对客户进行筛选、分类、评估、处置,在尽可能实现业务增长的前提下控制风险、平衡损失、提升效率,最终达到利润最大化的目的。在项目冷启动阶段,往往只有策略而没有模型,随着项目的开展和数据的积累,才会逐步进行模型的开发和迭代。原创 2024-08-13 19:55:53 · 425 阅读 · 0 评论 -
【ETL和数据模型】收益账单
数据抽取指的是从不同的网络、不同的操作平台、不同的数据库和数据格式、不同的应用中抽取数据的过程。ETL是数据抽取、转换和装载(Extract,Transformation,Loading)的英文简称,是数据仓库获取高质量数据的关键环节,是对分散在各业务系统中的现有数据进行提取、转换清洗和加载的过程,使这些数据成为商业智能系统需要的有用数据。将这些相互关联的分布式异构数据源集成在一起,能够让上层用户无视不同系统的数据差异,透明的方式访问这些数据,就是数据集成所要解决的问题。收益账单相关的关键指标。原创 2024-07-18 21:11:13 · 357 阅读 · 0 评论 -
【风控策略开发】单维度策略开发
原创 2024-07-13 18:10:43 · 124 阅读 · 0 评论 -
金控风控:Python实现基于数据技巧的拒绝推断
在对精度较为敏感的风控系统中,硬截断法显然是不合理的。因此在实际项目中,通常使用多个差异化较大的模型进行交叉筛选,将多模型评分均较低的样本作为负样本。一种常见的思路是,直接使用KGB模型在拒绝样本上做预测,并将低分样本(如分数最低的20%样本)认为是负样本,带入模型进行估 计,其余拒绝样本全部视为灰色样本,不予考虑。利用KGB模型进行打分,按照逾期概率降序排列,选择截断点 (cut-off)进行截断后,仅将截断点以下的蓝色部分作为负样本带入模 型进行学习,从而修正模型的偏差。根据KGB数据训练KGB模型。原创 2024-06-21 21:57:29 · 429 阅读 · 0 评论 -
金融风控之基金及其收益账单相关常识
同时,公募基金由专业的基金经理进行运作,他们拥有丰富的投资经验和专业的投资技能,能够为投资者提供更为精准的投资策略。债券型基金的投资目标是实现相对稳定的收益,适合于不愿承担太多风险、寻求当期稳定收益的投资者。,顾名思义,是主要投资于股票市场的基金类型。这类基金在投资组合中,股票投资的比例占据了相当重要的部分,通常股票投资的比例不低于基金资产总值的60%。指数型基金的投资目标是获取和大盘同步的获利,其投资策略是分散投资于目标指数的成份股,力求股票组合的收益率拟合该目标指数所代表的资本市场的平均收益率。原创 2024-06-21 21:36:21 · 418 阅读 · 0 评论 -
智能风控:信用评分卡模型中WOE和IV的含义及计算
目录一、IV 的用途二、对 IV 的直观理解三、WOE 的计算四、IV 的计算五、用实例介绍 IV 的计算和使用计算 WOE 和 IVIV 值的比较和变量预测能力的排序关于 IV 和 WOE 的进一步思考为什么用 IV 而不是直接用 WOEIV 的极端情况以及处理方式原创 2024-06-15 18:12:19 · 484 阅读 · 0 评论 -
智能风控:风控应用之定价
在金融领域,从大数据征信、大数据风控已经引起人们关注,但在具体大数据的处理、运算、加工、应用方面,目前还处于探索阶段。由于大数据的维度之多和噪音之繁,以及手握用户大数据的行业巨头尚未开放相关数据渠道,使得在大数据在实际应用场景中尚未发挥能效。目前,在金融领域的个人信贷业务中,例如各大银行的消费信贷类产品,通常会根据个人信用和资产情况而制定不同借款额度,每个个人的信用值、还款能力、违约风险都是不一样的,对于优质借款人和非优质借款人都使用差别不大的借款利率显然不合理。原创 2024-06-12 23:01:59 · 815 阅读 · 0 评论 -
智能风控:风控应用之额度
一般根据客户的贷后行为表现以及还款情况,做出额度调整的策略,以求得更大的收益,针对循环贷产品,通常会根据用户行为评分B卡的结果和额度使用率做额度调整策略,这里的行为评分指的近一年用户还款记录及行为表现来构建的,不会参与决策,只会基于行为评分做出相对应的策略调整,包括调整额度,改变营销手段等等,如果某用户的额度使用率很低,即使信用状况再好,调额也无法带来盈利空间,故而对于额度使用率低的用户,通常都会采用降低或者保持的调整策略。常用数据为:信贷数据可以是:银联数据,互联网行为数据,舆情数据等。原创 2024-06-12 22:37:42 · 1088 阅读 · 0 评论 -
智能风控:贷前审批策略
由于定价模型受客群性质、市场竞争因素和客户关系因素等影响,通过分析客户信用等级、在还款期限内的转移概率、计算预期损失及非预期损失,计算还款期限内的收益,最终实现差异化定价。额度下限信用资质:申请评分、信用历史等,通过对申请评分进行评分等级判断,高申请评分对应低风险等级,额度调整系数较高。授信完成用户提款时会触发用信策略集,提款间隔较长时需重新核查用户资质,一般用信策略比授信要宽松一些,整体策略集和准入策略集相似。收入负债:即用户的偿债能力,客户收入、征信报告借贷情况等。通过征信报告中房贷的还款数据。原创 2024-06-12 22:23:02 · 363 阅读 · 0 评论 -
智能风控:贷前策略的三个阶段
在贷前策略搭建初期上线多少规则比较好?是不是一次上线越多规则越好?既怕上多了无效策略导致上线时间的延后,错失业务进入市场的最佳良机,也怕上线规则漏过一些坏人,导致前期的风险指标难以交代。到底应该如何控制这个平衡?其实,一般在业务上线初期,规则越少越好,最好要有一个MVP版本,且一定要能支持快速迭代。转载 2024-06-12 22:16:35 · 777 阅读 · 0 评论 -
智能风控:贷前策略规则应用
就是规则集作为整体的最终命中率,它是由内部规则共同作用后得到的一个综合结果。但是综合命中率一般不等于内部每个规则命中率之和,因为内部规则大概率是会有交叉命中情况的,也就是同时命中的情况,一般来说坏客户更容易触发多条规则,也就是同时命中多条。是对规则集内部规则覆盖情况的统计,如果一个规则的命中可以完全被其他规则覆盖,那么该规则在规则集中就没有存在的价值了。也是针对规则集整体而言的,同样的内部单一规则的坏账率之和也不等于整体坏账率,计算逻辑为:1)根据单一规则命中统计规则集命中情况,任何一条命中即规则集命中;原创 2024-06-12 21:52:45 · 315 阅读 · 0 评论 -
智能风控:概论《拥抱大模型》
大模型相对传统模型具有一定的技术优势,以客户画像领域为例,传统模型是一系列的不同算法的小模型,例如以统计算法计算九资、以网络图谱计算客户关系、以树模型计算客户偏好,其数据结果均为固定化的评级评分等,但是大模型则是通用算法来感知描述上述画像,并且能够进一步感知风险浓度、欺诈态势等。目前看,大模型在金融行业的应用主要是,依托大模型人机交互能力的客服领域的应用,依托大模型生成能力的办公与代码领域的应用,但这些并不是金融机构的核心领域。第三层级就是将数据信息与模型能力嵌入到大模型中,实现能力的共享与迁移。原创 2024-06-12 21:37:34 · 322 阅读 · 0 评论 -
智能风控:信用评分模型及应用
账户层次评分模型:其预测性信息和表现性信息来自某个信贷产品或某个账户,比如对信用卡账户的风险进行预测,其所有的数据均来自信用卡账户。*客户层次评分模型:其预测性信息和/或表现性信息来自客户层次,该客户可能在同一银行内部拥有多个产品和账户,如储蓄账户、汽车贷款账户、住房贷款账户、信用卡账户等,各个产品的相关数据被综合起来作为模型的信息来源。原创 2024-06-05 11:35:05 · 163 阅读 · 0 评论 -
智能风控:评分卡建模
模型的本质是对现有业务问题的抽象理解。对评分卡模型进行了分类,本质都是一种由实际问题展开的建模思路,即包含了问题提出和问题抽象两部分。申请评分卡为解决首次贷款的用户的信用评估问题而建立。建立行为评分卡则是为了根据贷款期间产生的数据动态调整用户的额度。建立催收评分卡是为了根据用户的催回难度,合理配置资产处置资源。特征构造、特征变换、特征筛选、模型评估为模型开发的主要过程。正式建立评分卡模型前,通常要对模型进行初步设计,并在后续建模中根据实际表现进行调整。原创 2024-06-05 11:20:13 · 364 阅读 · 0 评论 -
智能风控:术语解读
对于风控领域中的基础概念,介绍一些主要的风控名词及其含义。除信贷基础指标外,还需要掌握风险相关的指标。原创 2024-06-05 10:59:06 · 460 阅读 · 0 评论 -
智能风控:评分卡的分类
适用客群适用客群即评分卡所适用的贷款群体。从适用客群的角度来定义, 常见的评分卡可以被划分为如下3种。用途 用途即评分卡的使用目的。常见的评分卡有如下6种定义方式。适用客群和用途这两个角度对 评分卡的类别进行定义。原创 2024-06-05 10:18:53 · 790 阅读 · 0 评论 -
智能风控:Python金融风险管理与评分卡建模
通常,用户的信用评估结果越好,平台授予用户的可贷款额度就越高,且贷款利率越低。为降低用户信用风险为平台带来的损失,通常平台会给予信用评分较低的用户更低的额度,且在监管与法律规定内,使用相对较高的贷款利率来弥补风险损失。互联网金融的申请过程,通常由用户从移动端(如手机App、网页 等)发起,首次贷款用户会经历申请、四要素验证、授信与额度利率定价、多层审批、用户提款等多个环节。对于预测信用较差的人,贷款机构一般是不会向其放款的,即便放款,为了抵御风险,也会 给予其较高的利息与较小的贷款金额。原创 2024-06-05 09:36:16 · 466 阅读 · 0 评论