高光谱遥感图像处理与信息提取综述

高光谱遥感图像处理与信息提取综述

 

高光谱遥感是对地观测的重要手段,高光谱图像处理与信息提取技术则是高光谱遥感领域的核心研究内容之一。高光谱图像处理与信息提取技术的研究主要包括数据降维、图像分类、混合像元分解和目标探测等方向。

 

高光谱图像处理与信息提取中面临的关键问题:

高光谱图像波段多、数据量大,而且混合像元问题较为严重,且同物异谱影响明显,这都是信息提取研究需要解决的关键问题,概括为四个方面:

(1)高光谱图像波段较多,相邻波段之间必然有着很强的相关性,这使得所观测到的数据在一定程度上存在冗余现象,而且数据量大,为图像的处理带来了压力,数据的膨胀导致计算机处理负荷大幅增加。另外,在高光谱图像数据获取过程中出现的噪声将会使图像中的光谱信息产生“失真”。因此需要进行数据降维,以压缩数据量和提高运算效率,同时可以简化和优化图像特征,并最大限度保留信号和压缩噪声。

(2)当一个像元对应的瞬时视场内存在多种不同地物类型,该像元的光谱特征则由这些地物的光谱信息共同构成,由此产生了混合像元现象。由于遥感器空间分辨率的制约,高光谱图像中普遍存在混合像元问题,这是制约分类精度提高和目标探测准确率的重要因素。为进一步挖掘像元内部信息,需要进行混合像元分解,发展描述光谱混合物理过程的数学模型以及求解模型的解混算法。

(3)利用高光谱图像进行地物精细分类是高光谱遥感技术应用的核心内容之一,分类结果是专题制图的基础数据,在土地覆盖和资源调查以及环境监测等领域均有着巨大的应用价值。高光谱图像分类中主要面临Hughes现象和维数灾难、特征空间中数据非线性分布等问题。同时,传统算法多是以像元作为基本单元进行分类,并未考虑遥感图像的空间域特征,从而使得算法无法有效处理同物异谱问题,分类结果中地物内部易出现许多噪点。

(4)高光谱图像提供的精细光谱特征可以用于区分存在细微差异的目标,包括那些与自然背景存在较高相似度的目标。因此,高光谱图像目标探测技术在公共安全和国防领域中有着巨大的应用潜力和价值。高光谱图像目标探测要求目标具有诊断性的光谱特征,在实际应用中受目标光谱的变异性、背景信息分布与模型假设存在差异、目标地物尺寸处于亚像元级别等问题影响,有时存在虚警率过高的问题,需要发展稳定可靠的新方法。

 

高光谱图像处理与信息提取方法发展现状与未来:

1、噪声评估与数据降维方法

(1)噪声评估

针对噪声评估方法的研究主要包括两种思路:一是基于空间域的方法,二是基于光谱域的方法。

1)基于空间域的噪声评估:均匀区域法、地学统计法、局部均值与局部标准差法、局部均匀块标准差法和基于高斯波形提取的优化方法。

2)基于光谱域的噪声评估:空间光谱维去相关法(SSDC)、残差调整的局部均值与局部标准差法、基于均匀区域划分和光谱维去相关(HRDSDC)。

上述算法是假设噪声与信号无关,也有一些算法可以在噪声与信号相关的假设条件下进行噪声评估,也是一个重要的方向(Acito等,2011;Uss等,2011)。

(2)光谱特征提取

高光谱数据降维技术主要是利用低维数据来有效表达高维数据信息,在压缩数据量的同时为地物信息提取提供优化的特征。高光谱数据降维方法主要分为两类:特征提取和波段选择。

高光谱数据特征提取方法:主成分分析、定向主成分分析、选择主成分分析、最小/最大自相关因子分析方法、最大噪声分离MNF(Maximum Noise Fraction)变换方法。

另外,基于流形学习的非线性特征提取方法、Kernel NWFE方法、Kernel LDA方法、核主成分分析方法。都是基于核函数的非线性特征提取方法,这些方法都是在原始线性数据降维算法的基础上,引入核方法,通过核函数,将数据映射到高维特征空间,在高维特征空间中运算线性降维方法,实现原始空间中的非线性的高光谱数据降维。但是,基于核函数的非线性降维方法往往依赖于某种隐式映射,不易直观地理解其工作机理,并且在如何选择核及配置最优的核参数方面仍有很多理论问题需要研究。

(3)光谱特征选择

光谱特征选择是针对特定对象选择光谱特征空间中的一个子集,这个子集是一个缩小了的光谱特征空间,但它包括了该对象的主要特征光谱,并在一个含有多种目标对象的组合中,该子集能够最大限度地区别于其他地物。

根据目标函数的计算是否需要先验的地物光谱特征信息,可将波段选择算法分为监督的和非监督的两类:

非监督波段选择算法目标函数包括:信息熵、一阶光谱导数、二阶光谱导数方法、相似度、单形体体积方法等;

监督波段选择算法目标函数包括:离散度、Bhattacharyya距离、Jeffries-Matusita距离、最小估计丰度协方差等。

波段选择算法中确定了目标函数以后,有效的搜索策略也是保证波段选择精度的重要因素。穷举搜索的计算量使这种搜索策略难以在实际中应用。目前在波段选择算法中普遍采用的是处理效率更高的顺序前向选择法、顺序前向浮动选择法。冯静和舒宁(2009)把遗传算法应用到波段选择算法中;杨三美(2011)在波段选择算法中采用了克隆选择算法作为搜索策略;Yan等人(2012)将粒子群优化算法应用到波段选择方法中。由于具有全局搜索和正反馈等优势,蚁群优化算法也作为搜索策略用到了波段选择算法中(Gao等,2014;Samadzadegan和Partovi,2010;周爽,2010;王立国和魏芳洁,2013)。此外,波段聚类(Martínez-Usómartinez-Uso等,2007;Su等,2011)和稀疏非负矩阵分解聚类(施蓓琦 等,2013)等技术的引入也有利于波段选择精度的提高。

 

2、混合像元分解方法

高光谱图像的混合像元分解有两个基本目的:确定组成混合像元的基本地物和计算各个基本地物在混合像元中所占比例。前者称为端元提取,后者称为丰度反演。这两者是实现混合像元分解的核心步骤。

混合像元分解,需要利用数学模型描述混合像元形成的物理过程。根据对物理过程抽象程度的不同,高光谱图像光谱混合模型可以分为线性光谱混合模型LSMM(Linear Spectral Mixing Moldel)和非线性光谱混合模型NLSMM(Nonlinear SpectralMixing Model)。

LSMMNLSMM模型一般都是将端元光谱作为单条曲线进行处理,忽略了端元光谱存在的变异性。光谱变异对混合像元分解影响的研究中,比较代表性的工作有两方面:一是在已有的线性混合模型基础上考虑光谱变异,用一个有限的光谱集合代表端元可能发生的各种变异情况。另一个是扩展现有的模型,对光谱变异程度进行建模,例如正态组分模型,它用概率来描述光谱的不确定性,将端元视为一个呈给定概率分布的随机变量。该方法利用特定参数来表示端元光谱变异,好处是这种方法在不存在纯像元的数据中也可以估计端元。

(1)线性光谱混合模型

线性光谱混合模型是假设太阳入射辐射只与一种地物表面发生作用,每个光子仅能“看到”一种物质并将其信号叠加到像元光谱中。

以线性光谱混合模型为基础的端元提取算法又可以根据设计思路分为几何学方法、统计学方法、稀疏回归方法和人工智能方法等类型。

1)几何学方法:PPI、NFINDR、VCA、SGA、SMACC、AVAMX、SVMAX、MVSA、MVES、RMVES和MVC-NMF等。

2)统计学方法:独立成分分析、依赖成分分析和贝叶斯分析等。

3)稀疏回归方法:SPICE、SUnSAL、SUnSAL/TV和L1/2-NMF。

近年,基于LSMM模型的混合像元分解算法的研究大多集中在已有算法的改进优化以及其他信息或者方法的引入。

人工智能方法可以将LSMM转化为一个组合优化问题(基于纯像元假设)或连续优化问题(无纯像元假设),然后利用人工智能算法进行求解,主要涉及人工智能算法中的群智能算法。首先,Zhang等人(2011)分别利用蚁群优化算法和离散粒子群算法&#x

  • 26
    点赞
  • 162
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值