基尔霍夫矩阵计算欧拉回路

Matrix-Tree定理(Kirchhoff矩阵-树定理)
*算法思想:
*(1)G的度数矩阵D[G]是一个n*n的矩阵,并且满足:当i≠j时,dij=0;当i=j时,dij等于vi的度数;
*(2)G的邻接矩阵A[G]是一个n*n的矩阵,并且满足:如果vi,vj之间有边直接相连,则aij=1,否则为0;
*定义图G的Kirchhoff矩阵C[G]为C[G]=D[G]-A[G];
*Matrix-Tree定理:G的所有不同的生成树的个数等于其Kirchhoff矩阵C[G]任何一个n-1阶主子式的行列式的绝对值;
*所谓n-1阶主子式,就是对于r(1≤r≤n),将C[G]的第r行,第r列同时去掉后得到的新矩阵,用Cr[G]表示;

所以,有向图所有的欧拉回路数: tw(G)mi=2(deg(i)1)!
(利用BEST theorm求得的欧拉回路数是不定起点的,而且重边看作不同的边)

有向图版本的模板

struct Matrix
{
    LL a[MAXV][MAXV];//C[G]
    Matrix()
    {
        memset(a,0,sizeof(a));
    }
    LL det(int n)//求前n行n列的行列式的值
    {
        for(int i=0;i<n;++i)
            for(int j=0;j<n;++j)
                a[i][j]=(a[i][j]%MOD+MOD)%MOD;
        LL ret=1;
        for(int i=0;i<n;i++)
        {
            for(int j=i+1;j<n;j++)
                while(a[j][i])
                {
                    LL t=a[i][i]/a[j][i];
                    for(int k=i;k<n;++k)
                        a[i][k]=((a[i][k]-a[j][k]*t)%MOD+MOD)%MOD;
                    for(int k=i;k<n;++k)
                        swap(a[i][k],a[j][k]);
                    ret=-ret;
                }
            if(!a[i][i])
                return 0;
            ret=ret*a[i][i]%MOD;
        }
        ret=(ret%MOD+MOD)%MOD;
        return ret;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值