时域和频域的采样、周期性以及它们的相互关系
这段话描述了时域和频域之间的采样、周期性以及它们的相互关系。核心概念是傅里叶变换的对偶性,即时域和频域之间的关系。我们逐步解析这段话的每一部分:
1. 时域采样的影响
首先,时域的采样会导致频域中变得周期性。这意味着,如果我们对信号在时域上进行采样,它的频谱在频域上将呈现周期性重复。这个周期性与采样间隔 Δ t \Delta t Δt 直接相关。
- 采样间隔 Δ t \Delta t Δt:这是时域中两个采样点之间的时间间隔。
- 采样频率 f s = 1 Δ t f_s = \frac{1}{\Delta t} fs=Δt1:这是每秒采样的次数。也就是说,采样频率 f s f_s fs 是采样间隔的倒数,采样频率越高,采样点之间的时间间隔 Δ t \Delta t Δt 就越小。
如果用弧度表示采样频率,可以写成:
ω s = 2 π Δ t \omega_s = \frac{2\pi}{\Delta t} ωs=Δt2π
其中 ω s \omega_s ωs 是采样频率的角频率表示形式。
2. 对偶性:频域采样与时域周期性
傅里叶变换的对偶性告诉我们,如果对一个信号的频域进行采样,那么时域就会表现为周期性。这是时域和频域之间对称性质的一种体现。
具体来说:
- 如果时域被采样,频域会变得周期性,而这个周期由采样间隔 Δ t \Delta t Δt 决定。
- 如果频域被采样,时域会变得周期性,而这个周期由频域采样间隔 Δ ω \Delta \omega Δω 决定。
3. 时域周期性的推导
当我们在频域中对信号进行采样时,时域信号会表现出周期性。这个周期 T T T 是时域信号的重复周期,它与频域采样间隔 Δ ω \Delta \omega Δω 有直接关系。
- 频域采样间隔 Δ ω \Delta \omega Δω:频域上两个频率点之间的间隔,定义为 Δ ω = 2 π Δ f \Delta \omega = 2\pi \Delta f Δω=2πΔf,其中 Δ f \Delta f Δf 是频率间隔。
- 时域周期 T T T:时域中的周期是与频域采样间隔成反比的。具体来说,如果我们在频域中采样,时域中的周期 T T T 可以通过以下公式表示:
T = N Δ t T = N \Delta t T=NΔt
这里 N N N 是时域中采样点的总数, Δ t \Delta t Δt 是时域中每个采样点之间的间隔。因此,时域的周期 T T T 等于采样点的数量 N N N 乘以每个采样点的间隔 Δ t \Delta t Δt。
4. 时域中的周期性样本数量
这意味着,如果我们对频域信号进行采样,当我们对采样频谱进行逆傅里叶变换时,时域中的信号会变成周期性的。这个周期是 N N N 个样本,代表了时域信号的重复长度。
换句话说,频域的采样会在时域中引入周期性,且这个周期与时域中的采样点数量有关。当你对离散的频域信号进行逆变换时,时域信号会每隔 N N N 个样本重复一次。
总结
- 时域采样导致频域周期性,周期与采样间隔 Δ t \Delta t Δt 相关。
- 频域采样导致时域周期性,时域的周期为 T = N Δ t T = N \Delta t T=NΔt,即 N N N 个样本的长度。
- 傅里叶变换的对偶性:时域和频域的采样/周期性具有对称性,时域采样对应频域周期,频域采样对应时域周期。
这种对偶关系是信号处理的核心概念,通过理解时域和频域之间的这种相互作用,可以解释很多离散信号处理中的现象。
import numpy as np
import matplotlib.pyplot as plt
# Parameters
fs = 1 # Sampling frequency in Hz
T = 1/fs # Sampling period
N = 8 # Number of samples
t = np.linspace(0, (N-1)*T, N) # Time vector
# Generate a discrete-time signal (e.g., a cosine wave)
f_signal = 0.1 # Frequency of the signal in Hz
x_n = np.cos(2 * np.pi * f_signal * t) # Discrete-time signal
# Visualize the discrete-time signal and its periodic extension
plt.figure(figsize=(10, 6))
# Plot the original sampled signal
plt.stem(t, x_n, 'r', basefmt=" ", markerfmt='ro', label='Sampled Signal')
plt.plot(t, x_n, 'b-', label='Underlying Signal')
# Extend the signal periodically
t_extended = np.linspace(0, 2 * (N-1)*T, 2*N)
x_extended = np.tile(x_n, 2) # Periodic extension of the signal
plt.stem(t_extended, x_extended, 'g', basefmt=" ", markerfmt='go', label='Periodic Extension')
# Plot labels and titles
plt.title('Discrete-Time Signal and Periodic Extension (N samples)')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
# Show plot
plt.show()
图中的内容:
蓝色曲线(Underlying Signal): 代表了生成的原始离散时间信号(例如,余弦波)。
红色竖线和圆点(Sampled Signal): 表示离散信号的采样点,即在时域中每个采样时刻的信号值。
绿色竖线和圆点(Periodic Extension): 表示信号的周期性扩展。由于离散时间信号的频域是周期性的,逆傅里叶变换后的时域信号也会周期性重复。这部分绿色的点是对原始信号的一个周期性复制。