傅里叶对偶性

时域和频域的采样、周期性以及它们的相互关系

这段话描述了时域和频域之间的采样、周期性以及它们的相互关系。核心概念是傅里叶变换的对偶性,即时域和频域之间的关系。我们逐步解析这段话的每一部分:

1. 时域采样的影响

首先,时域的采样会导致频域中变得周期性。这意味着,如果我们对信号在时域上进行采样,它的频谱在频域上将呈现周期性重复。这个周期性与采样间隔 Δ t \Delta t Δt 直接相关。

  • 采样间隔 Δ t \Delta t Δt:这是时域中两个采样点之间的时间间隔。
  • 采样频率 f s = 1 Δ t f_s = \frac{1}{\Delta t} fs=Δt1:这是每秒采样的次数。也就是说,采样频率 f s f_s fs 是采样间隔的倒数,采样频率越高,采样点之间的时间间隔 Δ t \Delta t Δt 就越小。

如果用弧度表示采样频率,可以写成:

ω s = 2 π Δ t \omega_s = \frac{2\pi}{\Delta t} ωs=Δt2π

其中 ω s \omega_s ωs 是采样频率的角频率表示形式。

2. 对偶性:频域采样与时域周期性

傅里叶变换的对偶性告诉我们,如果对一个信号的频域进行采样,那么时域就会表现为周期性。这是时域和频域之间对称性质的一种体现。

具体来说:

  • 如果时域被采样,频域会变得周期性,而这个周期由采样间隔 Δ t \Delta t Δt 决定。
  • 如果频域被采样,时域会变得周期性,而这个周期由频域采样间隔 Δ ω \Delta \omega Δω 决定。

3. 时域周期性的推导

当我们在频域中对信号进行采样时,时域信号会表现出周期性。这个周期 T T T 是时域信号的重复周期,它与频域采样间隔 Δ ω \Delta \omega Δω 有直接关系。

  • 频域采样间隔 Δ ω \Delta \omega Δω:频域上两个频率点之间的间隔,定义为 Δ ω = 2 π Δ f \Delta \omega = 2\pi \Delta f Δω=2πΔf,其中 Δ f \Delta f Δf 是频率间隔。
  • 时域周期 T T T:时域中的周期是与频域采样间隔成反比的。具体来说,如果我们在频域中采样,时域中的周期 T T T 可以通过以下公式表示:

T = N Δ t T = N \Delta t T=NΔt

这里 N N N 是时域中采样点的总数, Δ t \Delta t Δt 是时域中每个采样点之间的间隔。因此,时域的周期 T T T 等于采样点的数量 N N N 乘以每个采样点的间隔 Δ t \Delta t Δt

4. 时域中的周期性样本数量

这意味着,如果我们对频域信号进行采样,当我们对采样频谱进行逆傅里叶变换时,时域中的信号会变成周期性的。这个周期是 N N N 个样本,代表了时域信号的重复长度。

换句话说,频域的采样会在时域中引入周期性,且这个周期与时域中的采样点数量有关。当你对离散的频域信号进行逆变换时,时域信号会每隔 N N N 个样本重复一次。

总结

  • 时域采样导致频域周期性,周期与采样间隔 Δ t \Delta t Δt 相关。
  • 频域采样导致时域周期性,时域的周期为 T = N Δ t T = N \Delta t T=NΔt,即 N N N 个样本的长度。
  • 傅里叶变换的对偶性:时域和频域的采样/周期性具有对称性,时域采样对应频域周期,频域采样对应时域周期。

这种对偶关系是信号处理的核心概念,通过理解时域和频域之间的这种相互作用,可以解释很多离散信号处理中的现象。

import numpy as np
import matplotlib.pyplot as plt

# Parameters
fs = 1  # Sampling frequency in Hz
T = 1/fs  # Sampling period
N = 8  # Number of samples
t = np.linspace(0, (N-1)*T, N)  # Time vector

# Generate a discrete-time signal (e.g., a cosine wave)
f_signal = 0.1  # Frequency of the signal in Hz
x_n = np.cos(2 * np.pi * f_signal * t)  # Discrete-time signal

# Visualize the discrete-time signal and its periodic extension
plt.figure(figsize=(10, 6))

# Plot the original sampled signal
plt.stem(t, x_n, 'r', basefmt=" ", markerfmt='ro', label='Sampled Signal')
plt.plot(t, x_n, 'b-', label='Underlying Signal')

# Extend the signal periodically
t_extended = np.linspace(0, 2 * (N-1)*T, 2*N)
x_extended = np.tile(x_n, 2)  # Periodic extension of the signal
plt.stem(t_extended, x_extended, 'g', basefmt=" ", markerfmt='go', label='Periodic Extension')

# Plot labels and titles
plt.title('Discrete-Time Signal and Periodic Extension (N samples)')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()

# Show plot
plt.show()


在这里插入图片描述
图中的内容:
蓝色曲线(Underlying Signal): 代表了生成的原始离散时间信号(例如,余弦波)。
红色竖线和圆点(Sampled Signal): 表示离散信号的采样点,即在时域中每个采样时刻的信号值。
绿色竖线和圆点(Periodic Extension): 表示信号的周期性扩展。由于离散时间信号的频域是周期性的,逆傅里叶变换后的时域信号也会周期性重复。这部分绿色的点是对原始信号的一个周期性复制。

### 门函数的傅里叶变换及其对偶性质 在信号处理领域,矩形脉冲(通常称为门函数或rect函数)是一个重要的基本概念。该函数定义如下: 对于时间域中的门函数 \( \text{rect}(t/T) \),其表达式为: \[ \text{rect}\left(\frac{t}{T}\right)= \begin{cases} 1, & |t|< T/2 \\ 0, & |t|\geqslant T/2 \end{cases} \] #### 傅里叶变换 门函数的傅里叶变换结果是sinc函数。具体来说, \[ F\{\text{rect}(t)\}=Tsinc(fT), \] 其中 sinc 函数由下式给出: \[ sinc(x)=\frac{\sin (\pi x)}{\pi x}. \] 此关系表明,在时域中有限宽度的脉冲对应于频域内的无限带宽分布。 #### 对偶特性 根据傅立叶变换理论中的对偶性原理,如果存在一对函数 \( f(t) \leftrightarrow F(jω) \),那么也必然有另一对互相对应的关系成立:\( F(t) ↔ 2πf(-jω) \)[^4]。因此, 当考虑门函数与其对应的正弦卡特兰函数之间的映射时,可以得出结论说,频率域上的理想低通滤波器形状实际上就是原有时域内门函数形式经过适当缩放和平移后的版本;反之亦然。 ```python import numpy as np from scipy import signal import matplotlib.pyplot as plt # 定义参数 duration = 1.0 # 时间持续长度 fs = 1000 # 采样率 (Hz) time = np.linspace(-duration / 2, duration / 2, int(duration * fs), endpoint=False) freq = np.fft.fftfreq(len(time)) * fs # 创建并绘制原始 rect 波形 rect_waveform = signal.boxcar(int(fs*duration)) plt.plot(time[:len(rect_waveform)//2], rect_waveform[:len(rect_waveform)//2]) plt.title('Rect Function') plt.xlabel('Time [seconds]') plt.ylabel('Amplitude') # 计算 FFT 并绘制幅度谱图 fft_result = abs(np.fft.fftshift(np.fft.fft(rect_waveform))) plt.figure() plt.plot(freq[freq.size//2:], fft_result[freq.size//2:]) plt.title('Fourier Transform of Rect Function') plt.xlabel('Frequency [Hz]') plt.ylabel('|X(f)|') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值