傅里叶对偶性

时域和频域的采样、周期性以及它们的相互关系

这段话描述了时域和频域之间的采样、周期性以及它们的相互关系。核心概念是傅里叶变换的对偶性,即时域和频域之间的关系。我们逐步解析这段话的每一部分:

1. 时域采样的影响

首先,时域的采样会导致频域中变得周期性。这意味着,如果我们对信号在时域上进行采样,它的频谱在频域上将呈现周期性重复。这个周期性与采样间隔 Δ t \Delta t Δt 直接相关。

  • 采样间隔 Δ t \Delta t Δt:这是时域中两个采样点之间的时间间隔。
  • 采样频率 f s = 1 Δ t f_s = \frac{1}{\Delta t} fs=Δt1:这是每秒采样的次数。也就是说,采样频率 f s f_s fs 是采样间隔的倒数,采样频率越高,采样点之间的时间间隔 Δ t \Delta t Δt 就越小。

如果用弧度表示采样频率,可以写成:

ω s = 2 π Δ t \omega_s = \frac{2\pi}{\Delta t} ωs=Δt2π

其中 ω s \omega_s ωs 是采样频率的角频率表示形式。

2. 对偶性:频域采样与时域周期性

傅里叶变换的对偶性告诉我们,如果对一个信号的频域进行采样,那么时域就会表现为周期性。这是时域和频域之间对称性质的一种体现。

具体来说:

  • 如果时域被采样,频域会变得周期性,而这个周期由采样间隔 Δ t \Delta t Δt 决定。
  • 如果频域被采样,时域会变得周期性,而这个周期由频域采样间隔 Δ ω \Delta \omega Δω 决定。

3. 时域周期性的推导

当我们在频域中对信号进行采样时,时域信号会表现出周期性。这个周期 T T T 是时域信号的重复周期,它与频域采样间隔 Δ ω \Delta \omega Δω 有直接关系。

  • 频域采样间隔 Δ ω \Delta \omega Δω:频域上两个频率点之间的间隔,定义为 Δ ω = 2 π Δ f \Delta \omega = 2\pi \Delta f Δω=2πΔf,其中 Δ f \Delta f Δf 是频率间隔。
  • 时域周期 T T T:时域中的周期是与频域采样间隔成反比的。具体来说,如果我们在频域中采样,时域中的周期 T T T 可以通过以下公式表示:

T = N Δ t T = N \Delta t T=NΔt

这里 N N N 是时域中采样点的总数, Δ t \Delta t Δt 是时域中每个采样点之间的间隔。因此,时域的周期 T T T 等于采样点的数量 N N N 乘以每个采样点的间隔 Δ t \Delta t Δt

4. 时域中的周期性样本数量

这意味着,如果我们对频域信号进行采样,当我们对采样频谱进行逆傅里叶变换时,时域中的信号会变成周期性的。这个周期是 N N N 个样本,代表了时域信号的重复长度。

换句话说,频域的采样会在时域中引入周期性,且这个周期与时域中的采样点数量有关。当你对离散的频域信号进行逆变换时,时域信号会每隔 N N N 个样本重复一次。

总结

  • 时域采样导致频域周期性,周期与采样间隔 Δ t \Delta t Δt 相关。
  • 频域采样导致时域周期性,时域的周期为 T = N Δ t T = N \Delta t T=NΔt,即 N N N 个样本的长度。
  • 傅里叶变换的对偶性:时域和频域的采样/周期性具有对称性,时域采样对应频域周期,频域采样对应时域周期。

这种对偶关系是信号处理的核心概念,通过理解时域和频域之间的这种相互作用,可以解释很多离散信号处理中的现象。

import numpy as np
import matplotlib.pyplot as plt

# Parameters
fs = 1  # Sampling frequency in Hz
T = 1/fs  # Sampling period
N = 8  # Number of samples
t = np.linspace(0, (N-1)*T, N)  # Time vector

# Generate a discrete-time signal (e.g., a cosine wave)
f_signal = 0.1  # Frequency of the signal in Hz
x_n = np.cos(2 * np.pi * f_signal * t)  # Discrete-time signal

# Visualize the discrete-time signal and its periodic extension
plt.figure(figsize=(10, 6))

# Plot the original sampled signal
plt.stem(t, x_n, 'r', basefmt=" ", markerfmt='ro', label='Sampled Signal')
plt.plot(t, x_n, 'b-', label='Underlying Signal')

# Extend the signal periodically
t_extended = np.linspace(0, 2 * (N-1)*T, 2*N)
x_extended = np.tile(x_n, 2)  # Periodic extension of the signal
plt.stem(t_extended, x_extended, 'g', basefmt=" ", markerfmt='go', label='Periodic Extension')

# Plot labels and titles
plt.title('Discrete-Time Signal and Periodic Extension (N samples)')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()

# Show plot
plt.show()


在这里插入图片描述
图中的内容:
蓝色曲线(Underlying Signal): 代表了生成的原始离散时间信号(例如,余弦波)。
红色竖线和圆点(Sampled Signal): 表示离散信号的采样点,即在时域中每个采样时刻的信号值。
绿色竖线和圆点(Periodic Extension): 表示信号的周期性扩展。由于离散时间信号的频域是周期性的,逆傅里叶变换后的时域信号也会周期性重复。这部分绿色的点是对原始信号的一个周期性复制。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值