一致逼近核(Universal Kernels)

本文介绍了可再生核Hilbert空间(RKHS)的概念,包括其内积性质和核函数。RKHS与核函数之间的关系通过Mercer核进行了阐述,强调了核函数在半正定性和特征映射中的作用。此外,文章探讨了一致逼近核,讨论了在不同范数下的收敛性,并展示了在特征映射和Mercer特征下的形式。
摘要由CSDN通过智能技术生成

可再生核Hilbert空间

给定集合 X X X上的函数空间 H \mathcal{H} H称为函数Hilbert空间,若其有内积 ⟨ ⋅ , ⋅ ⟩ H \langle{\cdot,\cdot}\rangle_\mathcal{H} ,H,且任意 f ∈ H f\in\mathcal{H} fH ∥ f ∥ H = 0 ⇔ ( ∀ x ∈ X )   f ( x ) = 0 \|f\|_\mathcal{H}=0\Leftrightarrow (\forall x\in X)~f(x)=0 fH=0(xX) f(x)=0。若 H \mathcal{H} H为函数Hilbert空间,并且对 X X X上的所有点赋值泛函都关于范数 ∥ ⋅ ∥ H \|\cdot\|_\mathcal{H} H连续,则称此空间为可再生核Hilbert空间(RKHS)。
  任意RKHS有唯一的核函数(即为 H \mathcal{H} H上的点赋值泛函,显然应唯一) K : X × X → C K:X\times X\to\mathbb{C} K:X×XC,满足
  性质一
∙ ∀ x ∈ X \quad\bullet\quad\forall x\in X xX K ( x , ⋅ ) ∈ H K(x,\cdot)\in\mathcal{H} K(x,)H
∙ ∀ x ∈ X \quad\bullet\quad\forall x\in X xX ⟨ f , K ( x , ⋅ ) ⟩ H = f ( x ) \langle{f,K(x,\cdot)\rangle}_\mathcal{H}=f(x) f,K(x,)H=f(x)
  性质二
∙ ⟨ K ( x , ⋅ ) ⟩ , K ( y , ⋅ ) H : = K ( x , y ) \quad\bullet\quad\langle{K(x,\cdot)\rangle,K(y,\cdot)}_\mathcal{H}:=K(x,y) K(x,),K(y,)H:=K(x,y)构成内积
∙ H : = s p a n ‾ { K ( x , ⋅ ) } x ∈ X \quad\bullet\quad\mathcal{H}:=\overline{\rm span}\left\{K(x,\cdot)\right\}_{x\in X} H:=span{ K(x,)}xX

性质一显然为RKHS定义的具体表达,即 X X X上全体点赋值泛函全体包含在 H \mathcal{H} H中。性质二通过 s p a n ‾ ⊥ { K ( x , ⋅ ) } x ∈ X = { 0 } \overline{\rm span}^\perp\left\{K(x,\cdot)\right\}_{x\in X}=\left\{0\right\} span{ K(x,)}xX={ 0}证明。若性质二成立,则必然满足性质一,从而得证性质二同时为另一定义。

总而言之,RKHS的上述三定义等价。

核函数

观察定义二之一得,对任意 X : = { x i } i = 1 n ⊂ X \mathcal{X}:=\left\{x_i\right\}_{i=1}^n\subset X X:={ xi}i=1nX K [ X ] : = [ K ( x i , x j ) ] i j K[\mathcal{X]}:=[K(x_i,x_j)]_{ij} K[X]:=[K(xi,xj)]ij必然半正定,而这个当仅当存在另一Hilbert空间 W \mathcal{W} W,和映射 Φ : X → W \Phi:X\to\mathcal{W} Φ:XW使得

K ( x , y ) = ⟨ Φ ( x ) ⟩ , Φ ( y ) W . K(x,y)=\langle{\Phi(x)\rangle,\Phi(y)}_\mathcal{W}. K(x,y)=Φ(x),Φ(y)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值