基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高。

基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高。
可用于做风电功率预测,电力负荷预测等等
标记注释清楚,可直接换数据运行。
代码实现训练与测试精度分析。
这段程序主要是一个基于CNN-LSTM-Attention神经网络的预测模型。下面我将逐步解释程序的功能和运行过程。

1. 导入所需的库:
- matplotlib.pyplot:用于绘图
- pandas.DataFrame和pandas.concat:用于数据处理
- sklearn.preprocessing.MinMaxScaler:用于数据归一化
- sklearn.metrics.mean_squared_error和sklearn.metrics.r2_score:用于评估模型性能
- keras:用于构建神经网络模型
- numpy:用于数值计算
- math.sqrt:用于计算平方根
- attention:自定义的注意力机制模块

2. 定义一个函数mae_value(y_true, y_pred)用于计算MAE(平均绝对误差)评价指标。

3. 定义一个函数series_to_supervised(data, n_in=1, n_out=1, dropnan=True),将序列转换为监督学习问题。该函数将前一采样点的天气影响因素和电力负荷作为特征数据,将后一采样点的电力负荷作为标签,然后按照这个规律将数据转换为监督学习问题。

4. 加载数据集,读取名为'cluster4.csv'的数据文件,并进行数据预处理,包括填充缺失值和转换数据类型。

5. 数据归一化,将数据缩放到0-1之间。

6. 调用series_to_supervised函数将数据集转换为监督学习问题。

7. 丢弃不需要预测的列,只保留电力负荷作为标签。

8. 将数据集分割为训练集、验证集和测试集。

9. 分割输入和输出,将前一采样点的天气因素和电力负荷作为输入,后一采样点的电力负荷作为输出标签。

10. 重塑数据形状,将数据转换为3D形状,满足循环神经网络的输入要求。

11. 构建神经网络模型,包括卷积层、池化层、Dropout层、LSTM层、注意力层和全连接层。

12. 编译模型,选择损失函数和优化器。

13. 训练模型,使用训练集数据进行训练,同时使用验证集数据进行验证。

14. 使用训练好的模型进行预测。

15. 反向缩放预测值和实际值,将归一化的数据转换为原始数据。

16. 计算RMSE(均方根误差)、MAPE(平均绝对百分比误差)、R2(确定系数)和MAE(平均绝对误差)等评价指标,并打印出来。

17. 绘制训练集和测试集的损失值对比图。

18. 绘制预测值和真实值的折线图。

19. 将预测值保存到文件中。

总结:这段程序是一个基于CNN-LSTM-Attention神经网络的电力负荷预测模型。它将历史天气因素和电力负荷作为输入,通过神经网络模型进行训练和预测,最终得到预测结果。该模型可以在电力负荷预测领域应用,通过分析历史数据和天气因素,预测未来的电力负荷情况。程序涉及到的知识点包括数据处理、数据归一化、监督学习、神经网络模型构建和训练等。

YID:5860673742612391

我就像你一样丶っ疯狂



基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序是一种用于预测时间序列数据的机器学习模型。该模型结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)和注意力机制,通过对时间序列数据的特征进行提取和建模,实现了较高的预测精度。

在该程序中,首先导入了所需的库,包括matplotlib.pyplot、pandas.DataFrame、pandas.concat、sklearn.preprocessing.MinMaxScaler、sklearn.metrics.mean_squared_error、sklearn.metrics.r2_score、keras、numpy和math.sqrt等。这些库主要用于数据处理、模型评估和神经网络模型的构建。

接下来,定义了一个计算MAE评价指标的函数mae_value(y_true, y_pred),用于评估模型的性能。通过计算预测值和真实值之间的平均绝对误差,可以衡量模型的预测精度。

然后,定义了一个将时间序列数据转换为监督学习问题的函数series_to_supervised(data, n_in=1, n_out=1, dropnan=True)。这个函数的作用是将时间序列数据转换为有监督学习的形式,即将当前时刻的特征数据作为输入,下一时刻的目标值作为输出。通过将数据转换为监督学习问题,可以更好地利用时间序列数据的特征进行建模和预测。

接下来,加载数据集,并进行数据预处理。在这个例子中,读取了一个名为’cluster4.csv’的数据文件,并对数据进行了缺失值填充和类型转换等预处理步骤。

为了提高模型的训练效果,对数据进行了归一化处理。通过将数据缩放到0-1之间,可以消除不同特征之间的量纲差异,提高模型的稳定性和收敛速度。

在数据准备阶段完成后,将数据集划分为训练集、验证集和测试集。通过将数据集划分为不同的子集,可以用于模型的训练、验证和测试。

接下来,将输入和输出分割,并对数据进行重塑。通过将前一采样点的天气因素和电力负荷作为输入,后一采样点的电力负荷作为输出标签,可以构建时间序列预测模型所需的输入和输出数据。

在数据准备工作完成后,开始构建神经网络模型。该模型采用了卷积层、池化层、Dropout层、LSTM层、注意力层和全连接层等组件,通过这些组件的组合和堆叠,可以对时间序列数据进行特征提取和建模。

在模型构建完成后,对模型进行编译,并选择损失函数和优化器。通过选择合适的损失函数和优化器,可以使模型具有更好的学习能力和泛化能力。

接下来,使用训练集数据对模型进行训练,并使用验证集数据进行验证。通过迭代训练和验证的过程,可以不断调整模型的参数和结构,以提高模型的预测精度。

训练完成后,使用训练好的模型对测试集数据进行预测。通过将历史天气因素和电力负荷作为输入,模型可以生成对未来电力负荷的预测结果。

接下来,对预测值和真实值进行反向缩放,将归一化的数据转换为原始数据。通过将预测值和真实值进行反向缩放,可以更直观地了解模型的预测效果。

最后,计算了RMSE、MAPE、R2和MAE等评价指标,并将其打印出来。通过这些评价指标,可以客观地评估模型的预测精度和性能。

除了模型的训练和预测,该程序还提供了一些可视化功能。通过绘制训练集和测试集的损失值对比图,可以直观地了解模型的训练效果。通过绘制预测值和真实值的折线图,可以比较模型的预测结果和真实数据之间的差异。

最后,将预测值保存到文件中,以便后续的分析和使用。

综上所述

以上相关代码,程序地址:http://matup.cn/673742612391.html

  • 17
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值