【温度预测】麻雀算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络温度预测SSA-CNN-LSTM-Multihead-Attention【含Matlab源码 3747期】

文章介绍了将CNN、LSTM和多头注意力机制结合的SSA-CNN-LSTM-Multihead-Attention模型,用于提高温度预测的准确性。模型利用麻雀算法优化多头注意力机制,通过对空间和时间特征的融合,提升预测性能。Matlab2014a版本展示了模型在实际数据上的应用和结果分析。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、麻雀算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络温度预测简介

“SSA-CNN-LSTM-Multihead-Attention” 是一个结合了卷积神经网络(CNN)、长短期记忆神经网络(LSTM)和多头注意力机制的模型,用于实现温度的回归预测。同时,麻雀算法被用于优化多头注意力机制。

下面是对该模型的简要介绍:
(1)卷积神经网络(CNN):CNN通过卷积层和池化层来提取输入数据的空间特征。在温度回归预测中,CNN可以用于从输入数据中提取相关的空间特征,例如地理位置、气象数据等。
(2)长短期记忆神经网络(LSTM):LSTM是一种能够处理序列数据的循环神经网络。它通过内部的记忆单元来捕捉序列数据中的长期依赖关系。在温度回归预测中,LSTM可以用于学习输入序列中的时间相关性和趋势。
(3)多头注意力机制(Multihead
Attention):多头注意力机制能够学习序列数据中不同位置之间的依赖关系。它通过并行地学习多个注意力头,从输入序列中提取关键特征并进行加权聚合。在温度回归预测中,多头注意力机制可以用于对输入序列中的关键特征进行加权融合。
(4)麻雀算法(Sparrow
Algorithm):麻雀算法是一种优化算法,用于调整多头注意力机制中的参数。它基于麻雀行为的觅食和群体协作策略,通过迭代优化过程来提高模型的性能。
通过结合这些组件,SSA-CNN-LSTM-Multihead-Attention模型旨在提高温度回归预测的准确性和泛化能力。具体而言,该模型能够从输入数据中提取空间和时间特征,并利用多头注意力机制对这些特征进行加权融合和建模,从而预测温度值。

⛄二、部分源代码

%% 清除内存、清除屏幕
clc
clear

%% 导入特征数据、当天的风速数据
data = xlsread(‘特征序列及实际值.xlsx’);
Features = data(1:18,:); %% 特征输入 :75天,每天24小时,每小时一个采样点,共计7524=1800小时,18个特征数据
Wind_data = data(19,:); %% 实际值输出:75天,每天24小时,每小时一个采样点,共计75
24=1800小时的风速数据

%% 数据平铺为4-D
LP_Features = double(reshape(Features,18,24,1,75)); %% 特征数据格式为1824175,分别对应18特征24小时,75天
LP_WindData = double(reshape(Wind_data,24,1,1,75)); %% 实际数据格式为24
1175 ,分别对应24小时,75天

%% 格式转换为cell
NumDays = 75; %% 数据总天数为 75天
for i=1:NumDays
FeaturesData{1,i} = LP_Features(:,:,1,i);
end

for i=1:NumDays
RealData{1,i} = LP_WindData(:,:,1,i);
end

%% 划分数据
XTrain = FeaturesData(:,1:73); %% 训练集输入为 1-73 天的特征
YTrain = RealData(:,2:74); %% 训练集输出为 2-74天 的实际值

XTest = cell2mat(FeaturesData(: , 74)); %% 测试集输入第 74 天的特征
Ytest = cell2mat(RealData(: , 75)); %% 测试集输出为第 75天 的实际值
SearchAgents_no=20;%种群数量
Max_iter=30;%迭代次数
lb=0.001;%学习率下限
ub=0.5;%学习率上限
dim=1;
fobj=@(x)fun(x,XTrain,YTrain,XTest,Ytest);
[Leader_score,Leader_pos,Convergence_curve,predict_value]=SSA(SearchAgents_no,Max_iter,lb,ub,dim,fobj);
[RMSE1,YPredicted]=fun(0.1,XTrain,YTrain,XTest,Ytest);
% load(‘data.mat’)
[RMSE1_SSA,YPredicted_SSA]=fun(Leader_pos,XTrain,YTrain,XTest,Ytest);
[mae,mse,rmse,mape,error,errorPercent]=calc_error(Ytest,YPredicted);
figure
plot(Convergence_curve,‘r-’)
xlabel(‘迭代次数’)
ylabel(‘RMSE’)
%% 绘图
figure
plot(Ytest,‘m-*’,‘LineWidth’,2);
hold on
plot(YPredicted,‘g-s’,‘LineWidth’,2);
plot(YPredicted_SSA,‘c-o’,‘LineWidth’,2);
legend(‘真实值’,‘CNN-LSTM-Attention预测值’,‘SSA-CNN-LSTM-Attention预测值’);
xlabel(‘预测样本’);
ylabel(‘预测结果’);
title(‘测试集预测结果对比’)
grid

%% 测试集结果
figure;
plotregression(Ytest,YPredicted_SSA,[‘回归图’]);
figure;
ploterrhist(Ytest-YPredicted_SSA,[‘误差直方图’]);

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]于淑香,温一军.基于GWO-BP算法的软件缺陷预测模型[J].安徽电子信息职业技术学院学报. 2018,17(06)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值