注:该内容由“数模加油站”原创,无偿分享,可以领取参考但不要利用该内容倒卖,谢谢!
2025华中杯 B 题 校园共享单车的调度与维护问题
问题1 根据附件1的数据,估算出目前校园内的共享单车总量,并测算出不同停车点位在不同时间点的数量分布
问题一建模目标与理解
本问题的核心任务是对校园共享单车的数量和时间分布进行估算。这一过程不仅是对已有数据的简单统计,还要求对时间与空间两维度上的车辆分布进行合理建模,并最终用于补全“表1”中的所有时间点与点位数据。在实际运营中,共享单车数量具有明显的时间规律性与空间偏向性,比如在清晨时段,宿舍区的单车数量可能较多,而教学区则较少;而在中午或傍晚,教学区、食堂等功能区域的单车数量会显著上升。这样的动态变化趋势,依赖于学校作息时间与学生出行习惯。因此,本问题的目标可以细化为两个子目标:(1)估算校园单车总量,即计算全天所有单车最大占用量;(2)构建停车点-时间二维矩阵分布模型,以补全所有缺失时间点下的车辆数量。这些估算结果不仅服务于第一问的表格填写任务,也为后续的调度优化模型提供基础数据支撑,是整个题目的第一块基石。一个高质量的时间-空间分布建模策略,可以显著提升后续模型的可行性与科学性。
二、数据结构处理与补全策略
附件1中提供了部分停车点、部分时刻的单车数量统计数据。首先需要对这些原始数据进行整理和结构化处理,包括时间格式转换、缺失值判断和按点位进行分组排序。由于题目要求填充的时间点固定为7:00、9:00、12:00、14:00、18:00、21:00和23:00,因此我们需要对每个停车点的时间序列进行插值处理,获得上述时间点的估计值。数据补全的策略应当结合多个因素进行考虑:(1)对于数据较完整的点位,可以使用样条插值法(Cubic Spline)进行拟合;(2)对于数据稀疏或波动性较大的点位,可以考虑正态分布高峰建模法或作息时间归因法来进行估算;(3)结合附件3作息时间表,我们可以发现上午8:00至9:40是第一与第二节课,11:15至12:00是午饭高峰,14:00及之后是下午课时间,这些时间点很可能对应不同区域的车辆流动高峰。这种对作息规律的建模,有助于提高时间插值的合理性。此外,对于可能存在的数据噪声或异常值,可以引入滑动窗口均值或中位数平滑方法进行预处理,以消除个别时间点的极端影响。
问题2建立各共享单车停车点在不同时间的用车需求模型。若为了最大程度缓解高峰期共享单车的供需矛盾,学校计划在车辆使用高峰前对车辆进行调度,试建立共享单车的调度模型。假设学校有3辆调度车,调度车限速 25kmh,每趟只能运输 20 辆共享单车.
一、问题理解与建模目标
共享单车在校园内的使用具有显著的时间和空间规律。尤其在早晚高峰、课间时间、午餐及晚餐前后这些特定时段,不同区域的单车需求差异明显。为了优化单车的分布状态,提高使用效率,题目设定在高峰前由三辆调度车执行单车调运任务,目标是在有限时间与容量的约束下,最大程度地缓解某些区域的“单车短缺”问题。
本问题的核心建模任务包含两个层面:首先,需要构建用车需求模型,即对每个停车点在目标时段的理想单车数量做出预测;其次,在此基础上设计一套单车调度系统,合理规划三辆调度车的路径、停靠点及运输数量,使得总体调度效率最大。这里的“效率”可以理解为“被满足的短缺车辆总数”,或者“调度所耗总时间最小”,甚至是两者的加权组合。
需要特别注意的是,调度车有两个关键约束:限速为25km/h,以及每次最多可运送20辆单车。此外,调度应在“用车高峰前”完成,意味着调度时间应被限制在一个可接受的时间窗口内,例如30~60分钟内。任务需要在全局优化和局部约束之间寻求平衡,适合采用启发式方法求解,是一个典型的带容量限制和路径约束的物流调度优化问题。
添加图片注释,不超过 140 字(可选)
问题3 结合问题2的结果,建立共享单车运营效率的评价模型,并基于建立的模型评估共享单车停车点位的设置是否合理?若不合理,给出布局调整方案。调整停车点位布局后,请重新评估共享单车运营效率。
问题4 假设共享单车每天总的故障率是6%,车辆出现故障后,需及时运回共享单车检修处检修。鲁迪是一名车辆检修师傅,负责每天将校园内的故障车辆运回检修处维修。请基于问题3中优化后的停车点位布局,建模分析鲁迪应该选择何时并采取何种巡检路线,才能最短时间内最大限度将故障车辆运回检修处,从而能将校园内故障车辆的比例控制在较低水平.
注:假定鲁迪驾驶的检修车辆时速恒为25kmh,每次最多可运输20辆自行车。鲁迪每到一个停车点位,查找和搬运一辆故障车的平均用时为1 分钟。