问题1:估算共享单车总量及不同停车点位在不同时间点的数量分布
首先,我们需要对附件1的数据进行汇总,以估算出校园内的共享单车总量。由于数据是按不同时间和停车点位统计的,我们可以通过对所有时间和点位的单车数量进行求和,得到总量。但需要注意的是,某些时间点或点位的单车数量可能为空(即没有统计),我们在求和时应忽略这些空值。
然而,直接求和可能存在问题,因为不同时间点的数据存在重叠(例如,上午7:30和8:50的数据可能包含同一批单车),且某些单车可能在统计时间段内被多次使用或移动。假设每个时间点的数据是独立的,即不考虑单车在不同时间点之间的移动。这样,我们可以将每个时间点的单车数量视为该时间点校园内单车数量的一个快照。
基于这个假设,我们可以计算出每个时间点的单车总量,并填入表1的对应列中。但由于我们没有具体的时间点对应到7:00、9:00等整点时间,我们需要对原始数据进行插值或平均来估算这些时间点的单车数量。这里我们采用平均法,即将所有时间点的单车数量求和后平均分配到各个整点时间。
对于不同停车点位在不同时间点的数量分布,我们可以直接对附件1的数据进行汇总和整理,得到每个点位在每个时间点的单车数量,并填入表1的对应行和列中。
见
问题2:建立用车需求模型和调度模型
用车需求模型:
为了建立用车需求模型,我们需要分析不同时间点和停车点位的单车使用需求。这可以通过统计每个时间点各点位的单车数量变化来实现。具体来说,我们可以计算每个时间段内(例如,从上午7:30到8:50)各点位的单车数量增加或减少量,以此来反映该时间段的用车需求。
然而,由于原始数据的时间粒度较粗且存在缺失值,直接计算可能并不准确。为了改进这一点,我们可以采用插值法或时间序列预测方法来估算缺失的数据点,并基于此建立更准确的用车需求模型。
调度模型:
基于用车需求模型,我们可以建立调度模型来优化单车的调度策略。调度模型的目标是在车辆使用高峰前将单车从低需求区域调度到高需求区域,以缓解供需矛盾。
具体来说,我们可以根据用车需求模型预测出每个时间段各点位的单车需求情况,并据此制定出调度计划。调度计划应包括调度车辆的数量、调度路线、调度时间等信息。在制定调度计划时,我们还需要考虑调度车的数量和运输能力限制(每趟只能运输20辆共享单车ÿ