注:该内容由“数模加油站”原创,无偿分享,可以领取参考但不要利用该内容倒卖,谢谢!
一、问题理解与建模目标
问题一要求我们建立一个企业可用于利润核算与经营评估的月度利润计算模型。根据题目设定与附件说明,企业的经营收入来自四种型号晶硅片的销售,而经营成本则包含硅棒单耗成本、生产耗材、电力费用、人工成本、生产公用成本及三项费用(销售、管理与财务费用)。我们需综合这些因素建立一个以四型硅片销量和售价为核心输入变量的利润函数,便于企业在不同参数情景下评估经营表现。
本模型的主要目标是:
- 准确模拟每月利润计算过程;
- 将利润函数形式化,便于进行量化分析与策略评估;
- 为后续问题中的优化决策提供目标函数支撑。
二、变量定义与符号说明
设第 $k$ 型晶硅片的相关变量如下,:
:第 k型晶硅片的销量(单位:百片);
- P_k:第 k型晶硅片的售价(单位:元/百片);
- S_k:第 k 型晶硅片的硅棒单耗(单位:kg/百片);
- c_s:单晶方棒单价(单位:元/kg);
- e_k:单位产量电耗(单位:kWh/百片);
- p_e:电价(单位:元/kWh);
:第 i 类耗材在第 k 型晶硅片生产中每百片消耗量;
:第 $i$ 类耗材单价(单位:元/单位);
- F:月度生产公用成本(固定);
:固定人工成本;
:浮动人工成本;
- E:三费总额(销售、管理、财务);
- R:副产品硅泥销售收益(可抵扣成本);
- n:计入计算的耗材种类数。
三、利润函数建模
1. 销售收入
企业销售收入由四型硅片销售额组成:
2. 单位变动成本(Variable Cost)
第 k$型晶硅片的单位生产变动成本包括三部分:
- 硅棒单耗成本:
- 电耗成本:
- 耗材成本:
因此,第 $k$ 型硅片的单位变动成本为:
其对应的总变动成本为:
$\text{VC}{\text{total}} = \sum{k=1}^{4} Q_k \cdot VC_k$
考虑硅泥销售收益 $R$ 可用于冲减变动成本,修正后为:
3. 固定成本与三费
这些成本直接加总,包括:
4. 最终利润函数
将收入减去所有成本,企业月利润表达为:
展开为:
化简整理得最终利润函数形式为:
该函数中,所有 $VC_k$ 可通过已知生产参数和耗材单价提前计算,、L_f 和 E为常数。因此,利润函数为关于 $Q_k$ 和 $P_k$ 的可调函数,可用于进一步分析。
四、模型应用与可拓展性
该利润函数具有如下应用价值:
- 收益分析:根据不同售价、销量组合计算企业月利润;
- 灵敏度分析:评估售价、电价或原材料变动对利润的影响;
- 策略模拟:为制定产销计划提供定量支撑;
- 优化输入源:可作为问题三的优化目标函数;
- 可扩展模块:便于后续接入预测模型或大模型修正模块。
此外,还可在此函数基础上引入税收、折旧、库存等更复杂因素,形成企业级利润模拟系统。
Python代码:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# ===================== 1. 参数设置 ===================== #
# 假设销量Q_k(单位:百片)
Q = np.array([1200, 950, 780, 620])
# 售价P_k(元/百片)
P = np.array([300, 320, 310, 330])
# 硅棒单耗 S_k(kg/百片)
S = np.array([0.85, 0.88, 0.90, 0.87])
cs = 45.0 # 单晶方棒单价(元/kg)
# 电耗 e_k(kWh/百片)
e = np.array([5.0, 5.2, 5.1, 5.3])
pe = 0.8 # 电价(元/kWh)
# 耗材消耗矩阵(3种耗材 × 4种型号)
b = np.array([
[1.2, 1.3, 1.1, 1.0], # 耗材1
[0.5, 0.6, 0.55, 0.52], # 耗材2
[0.8, 0.85, 0.82, 0.78] # 耗材3
])
pi = np.array([2.5, 3.0, 1.8]) # 单价(元/单位)
# 其他成本与收入
R = 5000 # 硅泥收入(元)
F = 20000 # 公用成本(元)
Lf = 18000 # 浮动人工成本(元)
Lc = 25000 # 固定人工成本(元)
E = 12000 # 三项费用(元)
# ===================== 2. 利润计算 ===================== #
# 耗材成本(每种型号)
耗材成本 = np.sum(b * pi[:, np.newaxis], axis=0)
# 单位变动成本(元/百片)
VC = S * cs + e * pe + 耗材成本
# 各型号总变动成本
VC_total = Q * VC
# 各型号销售收入
revenue_by_type = Q * P
# 利润贡献(每种型号)
profit_contrib = Q * (P - VC)
# 总利润计算
Revenue = np.sum(revenue_by_type)
Total_VC = np.sum(VC_total)
Profit = Revenue - Total_VC + R - F - Lf - Lc - E
# ===================== 3. 表格展示 ===================== #
result_df = pd.DataFrame({
'型号': ['Type 1', 'Type 2', 'Type 3', 'Type 4'],
'销量Q_k(百片)': Q,
'售价P_k(元/百片)': P,
'单位成本VC_k(元/百片)': VC,
'总收入(元)': revenue_by_type,
'总成本(元)': VC_total,
'利润贡献(元)': profit_contrib
})
print(result_df)
print(f"\n💰 企业本月利润为:{Profit:.2f} 元")
# ===================== 4. 利润可视化 ===================== #
sns.set(style="whitegrid")
plt.figure(figsize=(10, 6))
ax = sns.barplot(x=result_df["型号"], y=result_df["利润贡献(元)"], palette="Blues_d")
plt.title("各型号晶硅片利润贡献(元)", fontsize=16
后续都在“数模加油站”......