文章目录
1 参数方程
要求:理解
2 参数曲线的一般形式
要求:基函数,控制点,曲线方程,理解基函数和控制点关系
基函数:用一些简单多项式函数(基函数)组合出所需要的曲线曲面。这些函数都是标准化了的函数,与具体问题无关,是固定不变的。
控制点: 逼近法中所建立的曲线或曲面数学模型只是接近已知的点,而不要求一定通过。此时已知点称为控制点。
曲线方程:曲线方程就是标准基函数的加权和。
基函数和控制点关系:以控制点为权,将基函数组合在一起,使基函数叠加而形成曲线。控制点在组合过程中起到了调节系数的作用。
3 张量积形式的参数曲面
曲面方程可以看做是曲线方程增加维数,从一维扩展到二维得到的,这样构建的曲面称为张量积曲面。
控制点应在空间排列成方阵。沿u方向有n+1个,沿v方向有m+1个,共(n+1)*(m+1)个点。
张量积曲面的优点:
(1)和曲线同构,仍然是使用控制点和基函数复合成;
(2)基函数仍然是曲线的基函数;
(3)方程结构简单,因此计算简单;
(4)由于和曲线基函数相同,构造方法相同,因此曲线的性质都可以推广到曲面上。
4 连续性的定义 参数连续性Ck
参数连续性用Ck表示,称为K阶参数连续,指的是P-和P+的K阶导数相同。
C0连续意味着P- = P+,即曲线在该点是连接在一起的。
C1连续意味着(P-)’ =( P+)’,即曲线在该点左右导数相同。
C2连续意味着(P-)’’ =( P+)’’,即曲线在该点左右二阶导数相同,切线从左侧平滑地过渡到右侧,两侧具有相同的曲率。
5 插值、逼近和拟合
思考:为什么要进行拟合
插值:插值 是对一组给定的已知点,这些点称为型值点,要求建立曲线或曲面数学模型,严格通过已知的每一个型值点。其数学模型称为插值曲线或插值曲面。
逼近:逼近法中所建立的曲线或曲面数学模型只是接近已知的点,而不要求一定通过。此时已知点称为控制点,因为它们虽然不在曲线上,但控制着曲线的形状。
拟合:插值和逼近统称为拟合,都是指设计中,基于已知的离散点生成的曲线或曲面,达到近似地表示物体形状的目的。
为什么要进行拟合:基于已知的离散点生成的曲线或曲面,达到近似地表示物体形状的目的
6 Bernstein多项式
要求:生成公式和性质,推导低次数解析函数
Bernstein多项式是一组多项式,包含n次多项式共n+1个。
一般性的数学公式如下:
Bernstein多项式的性质:
(1)权性 和为1
(2)非负性
(3)端点性质
t=0时,第一个基函数值为1,其它为0。
t=1时,最后一个基函数值为1,其它为0。