从0.5开始推导奈奎斯特采样定理

本文的目的是整理一下奈奎斯特采样定理的推导。因为本人数学比较菜,所以仅供参考。之所以说是从0.5开始推导,是因为我们需要一些基础的铺垫,例如傅里叶级数和傅里叶变换,而这些东西我暂时不会推,只能当工具先用起来。再次重申,本人数学比较菜,一些描述不会采用严格的定义性的表述,只能口语化说一声。

写这篇文章之前,我也参考了很多讲解奈奎斯特定理的博文,发现有很多文章是图文并茂,也有全是图没有公式的。它们给了我很多启发。然而,我本人的数学很菜,看了一些博文,有一种知其然而不知其所以然的感觉。我并非想说那些博文写的不好,只是因为我本人数学很烂,对很多推导感到困惑,因此在这篇博文中,我本希望从0开始推导采样定理。

然而,傅里叶变换、冲激函数等基本工具,要想从头推导,难度太大,因此我们现在列出基本工具,试图仅用这些工具开始推导,这些工具派生的定理,我们将逐一证明。我称之为 从0.5开始。

我这篇博文的原则和主流的博文恰恰相反,全是公式,每一张图。实际上写到后面我非常后悔,我发现在采样信号频谱处给一张图会非常直观,而叙述则很繁琐。但为了维护傲娇的风格,只能咬牙坚持下去。我对关键的推导步骤做了详细阐述,我相信这能极大帮助到数学不好的读者。


1. 基本工具

傅里叶级数:如果一个连续信号 f ( t ) f(t) f(t) 是周期信号,其周期为T,那么可以展开成傅里叶级数,写作
x ( t ) = ∑ n = − ∞ + ∞ F n e j n Ω t , F n = ∫ − ∞ + ∞ x ( t ) e − j n Ω t d t x(t) = \sum\limits_{n=- \infty}^{+\infty}F_n e^{jn\Omega t}, F_n = \int_{-\infty}^{+\infty}x(t)e^{-jn\Omega t}dt x(t)=n=+FnejnΩt,Fn=+x(t)ejnΩtdt

其中 Ω = 2 π / T \Omega = 2\pi/T Ω=2π/T。这里不做推导了,因为我也不会推。

傅里叶变换:如果有一个非周期信号 ,也可以将其映射到频谱上,算作傅里叶变换,变换之后得到的函数是一个以 为自变量的函数 , 我们用 F : f → F \mathcal{F}: f \rightarrow F F:fF ,也即
F [ f ( t ) ] = F ( w ) \mathcal{F[f(t)]} = F(w) F[f(t)]=F(w)
来表示。我不是很确定这也写严谨与否,但我相信意思是对的,值得注意的是,我们用 F − 1 : F → f \mathcal{F}^{-1}: F \rightarrow f F1:Ff表示它的逆变换。 我们尝试完整地写出来,就是
F [ f ( t ) ] = F ( w ) = ∫ − ∞ + ∞ f ( t ) e − j w t d t F − 1 [ F ( w ) ] = 1 2 π ∫ − ∞ + ∞ F ( w ) e j w t d t \mathcal{F[f(t)]} = F(w) = \int_{-\infty}^{+\infty}f(t)e^{-jwt}dt\\ \mathcal{F}^{-1}[F(w)] = \frac{1}{2\pi}\int_{-\infty}^{+\infty}F(w)e^{jwt}dt F[f(t)]=F(w)=+f(t)ejwtdtF1[F(w)]=2π1+F(w)ejwtdt
至于说怎么来的,以及为何反变换多了一个 1 2 π \frac{1}{2\pi} 2π1,这里不做推导了,因为我暂时还不会。但有两点重要问题我必须说明一下,因为我的数学很烂,也算是提醒自己:

  • 以正变换 F \mathcal{F} F的计算式为例,可以看到积分项中 w , j w,j w,j是常数, t t t是积分变量。因此积分之后变量 t t t将不再存在于表达书中,而 w w w在积分中可以看做常数,而对于 F ( w ) F(w) F(w)却是变量,因此积分项确实是关于 w w w的函数。对于 F ( w ) = ∫ − ∞ + ∞ f ( t ) e − j w t d t F(w) = \int_{-\infty}^{+\infty}f(t)e^{-jwt}dt F(w)=+f(t)ejwtdt,我们大可以写成 F ( t ) = ∫ − ∞ + ∞ f ( w ) e − j w t d w F(t) = \int_{-\infty}^{+\infty}f(w)e^{-jwt}dw F(t)=+f(w)ejwtdw,数学比我更烂的读者或许会有违和感。
  • 还是以正变换为例,我们不妨仔细观察这个表达式。实际上它的形式符合 F [ ☆ ] = ∫ − ∞ + ∞ ☆ e − j w t d t \mathcal{F[☆]} = \int_{-\infty}^{+\infty}☆e^{-jwt}dt F[]=+ejwtdt。这一点至关重要,这告诉我们,考虑 F [ f ( t − t 0 ) ] \mathcal{F[f(t-t_0)]} F[f(tt0)],显然它是 F [ f ( t − t 0 ) ] = ∫ − ∞ + ∞ f ( t − t 0 ) e − j w t d t \mathcal{F[f(t-t_0)]} = \int_{-\infty}^{+\infty}f(t-t_0)e^{-jwt}dt F[f(tt0)]=+f(tt0)ejwtdt,而非 F [ f ( t − t 0 ) ] = ∫ − ∞ + ∞ f ( t − t 0 ) e − j w ( t − t 0 ) d t \mathcal{F[f(t-t_0)]} = \int_{-\infty}^{+\infty}f(t-t_0)e^{-jw(t-t_0)}dt F[f(tt0)]=+f(tt0)ejw(tt0)dt

2.位移性质

上述第二点实际上告诉我们了傅里叶变换的位移性质

如果 F [ f ( t ) ] = F ( w ) \mathcal{F[f(t)]} = F(w) F[f(t)]=F(w), 那么则有 F [ f ( t − t 0 ) ] = e − j w t 0 F ( w ) \mathcal{F[f(t-t_0)]} = e^{-jwt_0}F(w) F[f(tt0)]=ejwt0F(w).从形式上看,右侧仍不失为一个关于 w w w的函数,反映了时移信号的频谱。我们利用上面提到的第二个要点稍作证明:
F [ f ( t − t 0 ) ] = ∫ − ∞ + ∞ f ( t − t 0 ) e − j w t d t l e t   x = t − t 0 , w e   h a v e   d x = d t , t = x + t 0 ∫ − ∞ + ∞ f ( t − t 0 ) e − j w t d t = ∫ − ∞ + ∞ f ( x ) e − j w ( x + t 0 ) d x = ∫ − ∞ + ∞ f ( x ) e − j w x e − j w t 0 d x = e − j w t 0 ∫ − ∞ + ∞ f ( x ) e − j w x d x \mathcal{F[f(t-t_0)]} = \int_{-\infty}^{+\infty}f(t-t_0)e^{-jwt}dt\\ let \ x = t-t_0, we \ have \ dx = dt, t=x+t_0 \\ \int_{-\infty}^{+\infty}f(t-t_0)e^{-jwt}dt = \int_{-\infty}^{+\infty}f(x)e^{-jw(x+t_0)}dx\\ =\int_{-\infty}^{+\infty}f(x)e^{-jwx}e^{-jwt_0}dx=e^{-jwt_0}\int_{-\infty}^{+\infty}f(x)e^{-jwx}dx F[f(tt0)]=+f(tt0)ejwtdtlet x=tt0,we have dx=dt,t=x+t0+f(tt0)ejwtdt=+f(x)ejw(x+t0)dx=+f(x)ejwxejwt0dx=ejwt0+f(x)ejwxdx
再考虑上面提到的第一个要点,我们可以将后面的积分变量再换回 t t t,这时有
e − j w t 0 ∫ − ∞ + ∞ f ( x ) e − j w x d x = e − j w t 0 ∫ − ∞ + ∞ f ( t ) e − j w x d t = e − j w t 0 F ( w ) e^{-jwt_0}\int_{-\infty}^{+\infty}f(x)e^{-jwx}dx = e^{-jwt_0}\int_{-\infty}^{+\infty}f(t)e^{-jwx}dt = e^{-jwt_0}F(w) ejwt0+f(x)ejwxdx=ejwt0+f(t)ejwxdt=ejwt0F(w)
这样显然为了弥补我的很烂的数学,熟练地读者应该能够向导在换元的时候直接作 t = t − t 0 t = t - t_0 t=tt0,以免换来换去。

类似的,我们不难发现有 F − 1 [ F ( w − w 0 ) ] = e j w 0 t f ( t ) \mathcal{F^{-1}[F(w-w_0)]} = e^{jw_0t}f(t) F1[F(ww0)]=ejw0tf(t),这完全相当于 F ( w − w 0 ) = F [ e j w 0 t f ( t ) ] F(w-w_0) = \mathcal{F}[e^{jw_0t}f(t)] F(ww0)=F[ejw0tf(t)],请记住最后这个表达式,接下来会用到。

3.冲激函数的傅里叶变换

这里我不赘述冲激函数的定义,它可以由一个广义函数来进行定义,我们更关心冲激函数 δ ( t ) \delta(t) δ(t)的性质,它满足:
∫ − ∞ + ∞ f ( t ) δ ( t ) d t = f ( 0 ) , \int_{-\infty}^{+\infty}f(t)\delta(t)dt = f(0), +f(t)δ(t)dt=f(0)
称为冲激函数的取样性质,读者应该有能力自行想象冲激函数,冲激函数的面积是1,且非常的窄,因此取样性质可以感性理解一下。需要注意的是,积分区间不一定是 ∫ − ∞ + ∞ \int_{-\infty}^{+\infty} +,只要包含冲激时刻就可以了。
那么我们可以轻易导出冲激函数的傅里叶变换
F [ δ ( t ) ] = ∫ − ∞ + ∞ δ ( t ) e − j w x d t = e − j w t ∣ t = 0 = 1 = Δ ( w ) , \mathcal{F}[\delta(t)] = \int_{-\infty}^{+\infty}\delta(t)e^{-jwx}dt = e^{-jwt}|_{t=0} = 1 = \Delta(w), F[δ(t)]=+δ(t)ejwxdt=ejwtt=0=1=Δ(w),
也就是说 F [ δ ( t ) ] = 1 \mathcal{F}[\delta(t)] =1 F[δ(t)]=1
由此可见,冲激函数的傅里叶变换为常数1.我们不妨再对1做做反变换,或许能得到意外收获:
δ ( t ) = F − 1 ( 1 ) = ∫ − ∞ + ∞ 1 ⋅ e j w t d w , δ ( w ) = ∫ − ∞ + ∞ 1 ⋅ e j w t d t , \delta(t) = \mathcal{F}^{-1}(1) = \int_{-\infty}^{+\infty}1 \cdot e^{jwt}dw, \delta(w)= \int_{-\infty}^{+\infty}1 \cdot e^{jwt}dt, δ(t)=F1(1)=+1ejwtdwδ(w)=+1ejwtdt
读者可以发现,经过上面的解释,在这里的最后一步偷偷将 w , w, w, t t t互换已经非常合理,如果读者不能理解,想必是数学比我要烂很多。注意到 δ ( t ) \delta(t) δ(t)完全是偶函数,因此满足 δ ( t ) = δ ( − t ) \delta(t) = \delta(-t) δ(t)=δ(t),代入上式中,得到
δ ( − w ) = ∫ − ∞ + ∞ 1 ⋅ e − j w t d t = F ( 1 ) = δ ( w ) , \delta(-w) = \int_{-\infty}^{+\infty}1 \cdot e^{-jwt}dt = \mathcal{F}(1) = \delta(w), δ(w)=+1ejwtdt=F(1)=δ(w)
诚然,这正是我所说的意外收获,我们发现常函数 f ( t ) = 1 f(t) = 1 f(t)=1的傅里叶变换竟然是冲激函数。
实际上上面这样的推导是为了避开通过广义函数对冲激函数进行定义,我想如果直接套用广义函数的定义,证明常函数 f ( t ) = 1 f(t) = 1 f(t)=1的傅里叶变换竟然是冲激函数或许更为轻松,但无奈数学太烂。

4.采样函数及其傅里叶变换

我们考虑一个采样函数
s ( t ) = ∑ k = − ∞ + ∞ δ ( t − k T s ) , s(t) = \sum_{k=-\infty}^{+\infty}\delta(t-kT_s), s(t)=k=+δ(tkTs),
其中 T s T_s Ts是采样周期,相应的采样频率则是 2 π / T s = w s 2\pi/T_s = w_s 2π/Ts=ws. 首先注意到这一个周期函数,周期为 T s T_s Ts,我们可以先将其写成一个傅里叶级数
s ( t ) = ∑ n = − ∞ + ∞ s n e j n w s t , s(t) = \sum_{n=-\infty}^{+\infty}s_n e^{jnw_st}, s(t)=n=+snejnwst,
读者可以自行求出 s n = 1 / T s s_n = 1/T_s sn=1/Ts,因此我们有
s ( t ) = 1 T s ∑ n = − ∞ + ∞ e j n w s t , s(t) = \frac{1}{T_s}\sum_{n=-\infty}^{+\infty}e^{jnw_st}, s(t)=Ts1n=+ejnwst,
打公式真是太痛苦了,抱怨一下,我们继续。
这样在做傅里叶变换,会轻松得多。我们考虑 e j n w s t e^{jnw_st} ejnwst的傅里叶变换,则有
F ( e j n w s t ) = F ( 1 ⋅ e j n w s t ) = F ( w − n w s ) , \mathcal{F}(e^{jnw_st} ) = \mathcal{F}(1\cdot e^{jnw_st} ) = F(w-nw_s), F(ejnwst)=F(1ejnwst)=F(wnws)
眼熟吗?这是第二节最后一个表达式。这里的 F ( w ) F(w) F(w)毫无疑问对应了 f ( t ) = 1 f(t) = 1 f(t)=1的傅里叶变换,因此我们有
F ( e j n w s t ) = δ ( w − n w s ) , \mathcal{F}(e^{jnw_st} ) = \delta(w-nw_s), F(ejnwst)=δ(wnws)
这就不难想象
F [ s ( t ) ] = 1 T s ∑ n = − ∞ + ∞ δ ( w − n w s ) , \mathcal{F}[s(t)] = \frac{1}{T_s}\sum_{n=-\infty}^{+\infty}\delta(w-nw_s), F[s(t)]=Ts1n=+δ(wnws),
这真是神奇,冲激序列的傅里叶变换竟然仍是一个冲激序列(这样的描述可能不太严谨?)

5.频域卷积定理

我们现在给出卷积运算:
f ( t ) ∗ g ( t ) = ∫ − ∞ + ∞ f ( τ ) g ( t − τ ) d τ , f(t) *g(t) = \int_{-\infty}^{+\infty}f(\tau)g(t-\tau)d\tau, f(t)g(t)=+f(τ)g(tτ)dτ
卷积运算非常实用!尽管我还没完全吃透,但我们还是要注意一点: f ( t ) ∗ g ( t ) f(t) *g(t) f(t)g(t)卷积的结果仍然是一个关于 t t t的函数,观察积分表达式,我们也能看出来, τ \tau τ是积分变量,积分完成后,跟 τ \tau τ没有关系,而 t t t幸存下来。
另外我想补充一点写法上的规律:符号 ∗ * 在代码中通常表示普通乘法,但在公式中有其他含义;在公式中的普通乘法通常没有符号,除非表示强调,可以写作 1 ⋅ e j w t 1\cdot e^{jwt} 1ejwt,也就是用一个点表示。

卷积运算是对称的,也就是说 f ( t ) ∗ g ( t ) = g ( t ) ∗ f ( t ) f(t) *g(t) = g(t) *f(t) f(t)g(t)=g(t)f(t),这一点也很显然,我们稍作证明:
f ( t ) ∗ g ( t ) = ∫ − ∞ + ∞ f ( τ ) g ( t − τ ) d τ = ∫ + ∞ − ∞ f ( t − τ ) g ( τ ) d ( − τ ) = ∫ − ∞ + ∞ f ( t − τ ) g ( τ ) d τ = g ( t ) ∗ f ( t ) f(t) *g(t) = \int_{-\infty}^{+\infty}f(\tau)g(t-\tau)d\tau = \int_{+\infty}^{-\infty}f(t-\tau)g(\tau)d(-\tau) = \int_{-\infty}^{+\infty}f(t-\tau)g(\tau)d\tau = g(t) * f(t) f(t)g(t)=+f(τ)g(tτ)dτ=+f(tτ)g(τ)d(τ)=+f(tτ)g(τ)dτ=g(t)f(t)

频域卷积定理告诉我们:
F [ f 1 ( t ) f 2 ( t ) ] = 1 2 π F 1 ( w ) ∗ F 2 ( w ) , \mathcal{F}[f_1(t)f_2(t)] = \frac{1}{2\pi}F_1(w)*F_2(w), F[f1(t)f2(t)]=2π1F1(w)F2(w),
根据这一定理,我们很快将导出奈奎斯特采样定理。因此我们暂缓对频域卷积定理的推导,转而先利用这一结论导出奈奎斯特采样定理。

6.奈奎斯特采样定理

我们不妨先整理一下之前得到的重要结论:
采样信号的傅里叶变换:
F [ s ( t ) ] = S ( w ) = 1 T s ∑ n = − ∞ + ∞ δ ( w − n w s ) , \mathcal{F}[s(t)] = S(w) = \frac{1}{T_s}\sum_{n=-\infty}^{+\infty}\delta(w-nw_s), F[s(t)]=S(w)=Ts1n=+δ(wnws),
原始信号的傅里叶变换
F [ x ( t ) ] = X ( w ) , \mathcal{F}[x(t)] = X(w), F[x(t)]=X(w),

频域卷积定理:
F [ f 1 ( t ) f 2 ( t ) ] = 1 2 π F 1 ( w ) ∗ F 2 ( w ) , \mathcal{F}[f_1(t)f_2(t)] = \frac{1}{2\pi}F_1(w)*F_2(w), F[f1(t)f2(t)]=2π1F1(w)F2(w),
综合以上三项,不难得出采样所得信号 x s ( t ) x_s(t) xs(t)的傅里叶变换:
F [ x ( t ) s ( t ) ] = 1 2 π X ( w ) ∗ S ( w ) = 1 2 π ∫ − ∞ + ∞ S ( u ) X ( w − u ) d u = 1 2 π ∫ − ∞ + ∞ 1 T s ∑ n = − ∞ + ∞ δ ( u − n w s ) X ( w − u ) d u = 1 2 π T s ∑ n = − ∞ + ∞ ∫ − ∞ + ∞ δ ( u − n w s ) X ( w − u ) d u \mathcal{F}[x(t)s(t)] = \frac{1}{2\pi}X(w) * S(w) \\ = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S(u)X(w-u)du \\ = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1}{T_s}\sum_{n=-\infty}^{+\infty}\delta(u-nw_s)X(w-u)du \\ = \frac{1}{2\pi T_s} \sum_{n=-\infty}^{+\infty} \int_{-\infty}^{+\infty} \delta(u-nw_s)X(w-u)du F[x(t)s(t)]=2π1X(w)S(w)=2π1+S(u)X(wu)du=2π1+Ts1n=+δ(unws)X(wu)du=2πTs1n=++δ(unws)X(wu)du

我们不妨再回想冲激函数的取样性质
∫ − ∞ + ∞ δ ( t − t 0 ) f ( t ) d t = f ( t 0 ) , \int_{-\infty}^{+\infty} \delta(t-t_0)f(t)dt = f(t_0), +δ(tt0)f(t)dt=f(t0),
那么我们再考虑下前面式子的最后的积分部分:
∫ − ∞ + ∞ δ ( u − n w s ) X ( w − u ) d u = ∫ + ∞ − ∞ δ ( w − u − n w s ) X ( u ) ( − d u ) = ∫ + ∞ − ∞ δ ( u − w + n w s ) X ( u ) ( − d u ) = ∫ − ∞ + ∞ δ ( u − w + n w s ) X ( u ) d u = X ( w − n w s ) \int_{-\infty}^{+\infty} \delta(u-nw_s)X(w-u)du \\= \int_{+\infty}^{-\infty} \delta(w-u-nw_s)X(u)(-du ) \\= \int_{+\infty}^{-\infty} \delta(u-w+nw_s)X(u)(-du ) \\ = \int_{-\infty}^{+\infty} \delta(u-w+nw_s)X(u)du \\ =X(w-nw_s) +δ(unws)X(wu)du=+δ(wunws)X(u)(du)=+δ(uw+nws)X(u)(du)=+δ(uw+nws)X(u)du=X(wnws)
再次提醒读者,换元之后不要变换积分上下限。总之我们得到了
F [ x ( t ) s ( t ) ] = 1 2 π T s ∑ n = − ∞ + ∞ ∫ − ∞ + ∞ δ ( u − n w s ) X ( w − u ) d u = 1 2 π T s ∑ n = − ∞ + ∞ X ( w − n w s ) = X s ( w ) \mathcal{F}[x(t)s(t)] = \frac{1}{2\pi T_s} \sum_{n=-\infty}^{+\infty} \int_{-\infty}^{+\infty} \delta(u-nw_s)X(w-u)du \\ =\frac{1}{2\pi T_s} \sum_{n=-\infty}^{+\infty}X(w-nw_s) = X_s(w) F[x(t)s(t)]=2πTs1n=++δ(unws)X(wu)du=2πTs1n=+X(wnws)=Xs(w)
至此,我们便得到了采样后信号的频谱 X s ( w ) X_s(w) Xs(w),这个频谱是原信号的周期性重复,这里 w w w是变量, w s w_s ws是常量,表示采样率。我们仅考虑上式中 n = 0 n=0 n=0,那么得到原始信号频谱 X ( w ) X(w) X(w),我们不妨设 原始信号的最高频率为 w M w_M wM 也即
X ( w ) = 0 , w ∈ ( − ∞ , − w M ) ∪ ( w M , + ∞ ) X(w) = 0, w \in (-\infty, -w_M) \cup(w_M,+\infty) X(w)=0,w(,wM)(wM,+)
我们在考虑 n = 1 n=1 n=1,得到的是 X ( w − w s ) X(w-w_s) X(wws) ,这一组频谱务必和 X ( w ) X(w) X(w)能够分开,换言之区间没有重叠, X ( w − w s ) X(w-w_s) X(wws)的最小有效频率是 w s − w M w_s-w_M wswM, 这个频率要大于 X ( w ) X(w) X(w)的最高有效频率 w M w_M wM,得到如下表达式
w s − w M ≥ w M w_s-w_M \geq w_M wswMwM
也就是说 w s ≥ 2 w M w_s \geq 2w_M ws2wM.说白了就是 采样率必须高于两倍的原始信号最高频率。

至此,我们从有限的未证明的工具开始证明了奈奎斯特采样定理,这些未证明的工具包括:

  • 傅里叶级数与傅里叶变换
  • 冲激函数及其性质
  • 频域卷积定理

接下来我们将补充证明频域卷积定理,感兴趣的朋友不要走开。

7.频域卷积定理的证明

要证明下面的等式:
F [ f 1 ( t ) f 2 ( t ) ] = 1 2 π F 1 ( w ) ∗ F 2 ( w ) , \mathcal{F}[f_1(t)f_2(t)] = \frac{1}{2\pi}F_1(w)*F_2(w), F[f1(t)f2(t)]=2π1F1(w)F2(w),
一般来说有两个技巧:

  • 从卷积积分式的第二项展开
  • 交换积分次序

下面我们详细推导:
我们从卷积开始:
F 1 ( w ) ∗ F 2 ( w ) = ∫ − ∞ + ∞ F 1 ( u ) F 2 ( w − u ) d u = ∫ − ∞ + ∞ F 1 ( u ) [ ∫ − ∞ + ∞ f 2 ( t ) e − j ( w − u ) t d t ] d u F_1(w)*F_2(w) = \int_{-\infty}^{+\infty}F_1(u)F_2(w-u)du \\ = \int_{-\infty}^{+\infty}F_1(u)[\int_{-\infty}^{+\infty}f_2(t)e^{-j(w-u)t}dt]du F1(w)F2(w)=+F1(u)F2(wu)du=+F1(u)[+f2(t)ej(wu)tdt]du
对于数学不好的朋友,我推荐可以先把所有的项都捅进内部的积分去,得到
∫ − ∞ + ∞ [ ∫ − ∞ + ∞ F 1 ( u ) f 2 ( t ) e − j w t e j u t d t ] d u , \int_{-\infty}^{+\infty}[\int_{-\infty}^{+\infty}F_1(u)f_2(t)e^{-jwt}e^{jut}dt]du, +[+F1(u)f2(t)ejwtejutdt]du
然后再交换积分次序,得到
∫ − ∞ + ∞ [ ∫ − ∞ + ∞ F 1 ( u ) f 2 ( t ) e − j w t e j u t d u ] d t , \int_{-\infty}^{+\infty}[\int_{-\infty}^{+\infty}F_1(u)f_2(t)e^{-jwt}e^{jut}du]dt, +[+F1(u)f2(t)ejwtejutdu]dt
然后再从里面吧与u无关的项拿到外面去,得到
∫ − ∞ + ∞ f 2 ( t ) e − j w t [ ∫ − ∞ + ∞ F 1 ( u ) e j u t d u ] d t , \int_{-\infty}^{+\infty}f_2(t)e^{-jwt}[\int_{-\infty}^{+\infty}F_1(u)e^{jut}du]dt, +f2(t)ejwt[+F1(u)ejutdu]dt
不妨再说明一下,里面积分变量是 u u u f 2 ( t ) , e − j w t f_2(t), e^{-jwt} f2(t),ejwt都与 u u u无关。里面的积分项实际上是逆变换,因此写成
∫ − ∞ + ∞ f 2 ( t ) e − j w t [ 2 π f 1 ( t ) ] d t = 2 π ∫ − ∞ + ∞ f 1 ( t ) f 2 ( t ) e − j w t d t = F [ f 1 ( t ) f 2 ( t ) ] \int_{-\infty}^{+\infty}f_2(t)e^{-jwt}[2\pi f_1(t)]dt \\ = 2\pi \int_{-\infty}^{+\infty}f_1(t)f_2(t)e^{-jwt}dt = \mathcal{F}[f_1(t)f_2(t)] +f2(t)ejwt[2πf1(t)]dt=2π+f1(t)f2(t)ejwtdt=F[f1(t)f2(t)]
这里我为每一个变换都进行了注释,读者如果follow下来,不难发现我们已然证毕。

  • 10
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
采样定理(Nyquist定理)是一种关于信号采样的基本原理,它说明了在数字信号处理中进行正确采样的最低要求。下面是采样定理推导和应用: 推导: 设连续时间域信号为x(t),其带宽有限,即X(f)=0,当|f|>B/2。其中,X(f)是x(t)的频谱。根据傅里叶变换的性质,x(t)可以表示为其频谱在整个频率范围上的傅里叶变换: x(t)=∫X(f)e^(jwt)df 为了将连续时间域信号x(t)转换为离散时间域信号x[n],我们需要对其进行采样。采样操作可以看作是在时间域上取周期为T的脉冲函数g(t)与x(t)的乘积: x_s(t)=x(t)·g(t) 其中,s(t)是采样率为Fs=1/T的采样信号。对于理想低通滤波器,其频率响应为: H(f)= $$ \begin{cases} 1, & |f| < \frac{1}{2T} \\ 0, & |f| > \frac{1}{2T} \\ \end{cases} $$ 将x_s(t)通过理想低通滤波器可以得到采样信号的频谱: X_s(f)=X(f)·H(f) 根据频谱的性质,可以得到采样信号的频谱重复周期为Fs,即: X_s(f)=∑X(f-kFs) 当Fs>2B时,频谱重叠,采样信号的频谱不会发生重叠。因此,我们可以通过对采样信号进行抽取,得到原始信号的完整频谱,并且不会发生混叠。 应用: 采样定理在数字信号处理中具有重要的应用。它保证了在将连续时间域信号转换为离散时间域信号时不会损失信息。一些常见的应用包括: 1. 音频处理:通过将连续音频信号进行采样,可以将其转换为数字音频信号,实现音频录制、播放和处理等功能。 2. 数字通信:在数字通信系统中,采样定理保证了传输信号的完整性,避免了信息的丢失和损失。 3. 图像处理:通过对连续图像进行采样,可以将其转换为离散图像,实现图像的存储、传输和处理等操作。 总之,采样定理是数字信号处理中非常重要的基本原理,它为我们提供了正确进行信号采样和重构的理论依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值