HDU5685Problem A(逆元)

Problem Description
度熊手上有一本字典存储了大量的单词,有一次,他把所有单词组成了一个很长很长的字符串。现在麻烦来了,他忘记了原来的字符串都是什么,神奇的是他竟然记得原来那些字符串的哈希值。一个字符串的哈希值,由以下公式计算得到:

H(s)=ilen(s)i=1(Si28) (mod 9973)

Si 代表 S[i] 字符的 ASCII 码。

请帮助度熊计算大字符串中任意一段的哈希值是多少。
 

Input
多组测试数据,每组测试数据第一行是一个正整数 N ,代表询问的次数,第二行一个字符串,代表题目中的大字符串,接下来 N 行,每行包含两个正整数 a b ,代表询问的起始位置以及终止位置。

1N1,000

1len(string)100,000

1a,blen(string)
 

Output
对于每一个询问,输出一个整数值,代表大字符串从  a  位到  b  位的子串的哈希值。
 

Sample Input
  
  
2 ACMlove2015 1 11 8 10 1 testMessage 1 1
 

Sample Output
  
  
6891 9240 88

先看下逆元定义:同余方程ax≡b (mod n),如果 gcd(a,n)== 1,则方程只有唯一解。 在这种情况下,如果 b== 1,同余方程就是 ax=1 (mod n ),gcd(a,n)= 1。这时称求出的 x 为 a 的对模 n 乘法的逆元。

分析:在此之前只看过逆元,并没有做过题。为什么这个题可以用逆元?这里暂且用dp数组表示前缀积。那么我们要求a到b的哈希值=dp[b]/dp[a-1]%9973,这个式子如果之前dp[i]不取模的话就是正确的,但是它就是取模了,那么我们怎么办,这个时候当然是把除法转化成乘法,乘法取模相乘是没有影响的。a到b的哈希值=ans,那么ans*dp[a-1]*dp[a-1]的逆元%9973=dp[b]*dp[a-1]的逆元%9973(因为dp[a-1]*dp[a-1]的逆元%9973就是1嘛)。那么就要用到dp[a-1]关于9973的乘法逆元了。

我之前用扩展欧几里得求逆元时,认为某个前缀积dp[i]可能会等于0(因为可能是9973的倍数,取模之后就是0),但因为9973是素数,怎么可能几个数相乘会得到素数呢。所以直接用扩展欧几里得就可以了。

代码中给了两种扩展欧几里得方法:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
const int maxn = 100005;
const int mod = 9973;
char str[maxn];
int dp[maxn];
void init(char *str)
{
    dp[0] = 1;
    int len = strlen(str);
    for(int i = 1; i <= len; i++)
        dp[i] = dp[i-1]*(str[i-1]-28) % mod;
}
/*int exgcd(int a, int b, int &x, int &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    int r = exgcd(b, a %b, x, y);
    int t = y;
    y = x - (a/b) * y;
    x = t;
    return r;
}*/
int exgcd(int a, int b, int &x, int &y)
{
    if(b == 0)
    {
        x = 1;y = 0;
        return a;
    }
    int r = exgcd(b, a %b, y, x);
    y -= (a / b) * x;
    return r;
}
int main()
{
    int n, st, en, x, y;
    while(scanf("%d", &n) != EOF)
    {
        scanf("%s", str);
        init(str);
        while(n--)
        {
            scanf("%d%d", &st, &en);
            if(st > en)
                st^=en^=st^=en;
            //int gcd = __gcd(dp[st-1], 9973);
            //exgcd(dp[st-1]/gcd, 9973/gcd, x, y);
            exgcd(dp[st-1], 9973, x, y);
            x = (x + mod) % mod;
            int ans = x * dp[en] % mod;
            printf("%d\n",ans);
        }
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值