Problem Description
度熊手上有一本字典存储了大量的单词,有一次,他把所有单词组成了一个很长很长的字符串。现在麻烦来了,他忘记了原来的字符串都是什么,神奇的是他竟然记得原来那些字符串的哈希值。一个字符串的哈希值,由以下公式计算得到:
H(s)=∏i≤len(s)i=1(Si−28) (mod 9973)
Si 代表 S[i] 字符的 ASCII 码。
请帮助度熊计算大字符串中任意一段的哈希值是多少。
H(s)=∏i≤len(s)i=1(Si−28) (mod 9973)
Si 代表 S[i] 字符的 ASCII 码。
请帮助度熊计算大字符串中任意一段的哈希值是多少。
Input
多组测试数据,每组测试数据第一行是一个正整数
N
,代表询问的次数,第二行一个字符串,代表题目中的大字符串,接下来
N
行,每行包含两个正整数
a
和
b
,代表询问的起始位置以及终止位置。
1≤N≤1,000
1≤len(string)≤100,000
1≤a,b≤len(string)
1≤N≤1,000
1≤len(string)≤100,000
1≤a,b≤len(string)
Output
对于每一个询问,输出一个整数值,代表大字符串从
a
位到
b
位的子串的哈希值。
Sample Input
2 ACMlove2015 1 11 8 10 1 testMessage 1 1
Sample Output
6891 9240 88
先看下逆元定义:同余方程ax≡b (mod n),如果 gcd(a,n)== 1,则方程只有唯一解。 在这种情况下,如果 b== 1,同余方程就是 ax=1 (mod n ),gcd(a,n)= 1。这时称求出的 x 为 a 的对模 n 乘法的逆元。
分析:在此之前只看过逆元,并没有做过题。为什么这个题可以用逆元?这里暂且用dp数组表示前缀积。那么我们要求a到b的哈希值=dp[b]/dp[a-1]%9973,这个式子如果之前dp[i]不取模的话就是正确的,但是它就是取模了,那么我们怎么办,这个时候当然是把除法转化成乘法,乘法取模相乘是没有影响的。设a到b的哈希值=ans,那么ans*dp[a-1]*dp[a-1]的逆元%9973=dp[b]*dp[a-1]的逆元%9973(因为dp[a-1]*dp[a-1]的逆元%9973就是1嘛)。那么就要用到dp[a-1]关于9973的乘法逆元了。
我之前用扩展欧几里得求逆元时,认为某个前缀积dp[i]可能会等于0(因为可能是9973的倍数,取模之后就是0),但因为9973是素数,怎么可能几个数相乘会得到素数呢。所以直接用扩展欧几里得就可以了。
代码中给了两种扩展欧几里得方法:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
const int maxn = 100005;
const int mod = 9973;
char str[maxn];
int dp[maxn];
void init(char *str)
{
dp[0] = 1;
int len = strlen(str);
for(int i = 1; i <= len; i++)
dp[i] = dp[i-1]*(str[i-1]-28) % mod;
}
/*int exgcd(int a, int b, int &x, int &y)
{
if(b == 0)
{
x = 1;
y = 0;
return a;
}
int r = exgcd(b, a %b, x, y);
int t = y;
y = x - (a/b) * y;
x = t;
return r;
}*/
int exgcd(int a, int b, int &x, int &y)
{
if(b == 0)
{
x = 1;y = 0;
return a;
}
int r = exgcd(b, a %b, y, x);
y -= (a / b) * x;
return r;
}
int main()
{
int n, st, en, x, y;
while(scanf("%d", &n) != EOF)
{
scanf("%s", str);
init(str);
while(n--)
{
scanf("%d%d", &st, &en);
if(st > en)
st^=en^=st^=en;
//int gcd = __gcd(dp[st-1], 9973);
//exgcd(dp[st-1]/gcd, 9973/gcd, x, y);
exgcd(dp[st-1], 9973, x, y);
x = (x + mod) % mod;
int ans = x * dp[en] % mod;
printf("%d\n",ans);
}
}
return 0;
}