层次分析法在实际应用时,因判断矩阵(成对比较阵)是决策者主观判断的定量描述,求解判断矩阵不要求过高的精度,可以使用以下两种近似计算方法:
- 规范列平均法(和法)
- 几何平均法(根法)
和法
可以用成对比较阵A的列向量的平均值近似代替特征向量,称为和法,其步骤是:先将A的每一列向量归一化,按行求和后再归一化,得到 w = ( a 1 , a 2 , . . . , a n ) T w = (a_1,a_2,...,a_n)^T w=(a1,a2,...,an)T 即为近似特征向量,并将 1 n ∑ i = 1 n ( A w ) i a i \frac{1}{n}\sum_{i=1}^n\frac{(Aw)_i}{a_i} n1∑i=1nai(Aw)i(可以看例子理解)作为近似最大特征根。
设 A = [ 1 1 / 2 1 / 3 2 1 1 3 1 1 ] A = \left [ \begin{matrix} 1 & 1/2 & 1/3 \\ 2 & 1 & 1 \\ 3 & 1 & 1 \end {matrix} \right ] A= 1231/2111/311 ,用和法计算近似特征向量和近似最大特征根。
解:
【1】求特征向量:
A = [ 1 1 / 2 1 / 3 2 1 1 3 1 1 ] A = \left [ \begin{matrix} 1 & 1/2 & 1/3 \\ 2 & 1 & 1 \\ 3 & 1 & 1 \end {matrix} \right ] A= 1231/2111/311
各列归一化 → [ 1 / 6 1 / 5 1 / 7 1 / 3 2 / 5 3 / 7 1 / 2 2 / 5 3 / 7 ] \underrightarrow{各列归一化} \left [ \begin{matrix} 1/6 & 1/5 & 1/7 \\ 1/3 & 2/5 & 3/7 \\ 1/2 & 2/5 & 3/7 \end{matrix}\right ]