之前的博文主要介绍了空间域内的滤波器,本文主要从频域的角度进行分析。主要使用傅里叶变换,将空间域的图像转换到频域内,在频域内进行数字图像处理。这部分的内容及其重要,频域内的处理可以解决空间域内无法完成的图像增强。本文首先从数学角度,对图像的频域内的性质进行分析,然后在着重介绍滤波器在频域内的性质。
1.傅里叶变换与频域
在之前的文中,我们已经进行过一些基本的图像处理。比如,使用低通滤波可以将图像模糊,也有些许降噪的作用。这些都是在空间域内进行的滤波处理,这个处理主要是依靠卷积来进行计算的。首先,从连续的一维卷积入手,如下所示。
将上式进行傅里叶变换,可以得到如下结果。
从这个式子,我们可以得到一个重要的结论。也就是,函数与卷积的傅里叶变换所得到的结果,是函数与的傅里叶变换与的乘积。再将其总结得简单易懂一些,有如下结论。
在将其扩展到二维的形况下,假设尺寸为MxN的图像,如下关系是成立的。
其实到这,基本的原理就明了的。我们所看到的图像,均为空间域内的表现形式,我们无法辨识出频域内的图像。要进行频域内的滤波器处理,首先就需要进行傅里叶变换,然后直接进行滤波处理,最后再用反傅里叶变换倒回到空间域内。
到此,已经可以开始空间域内的滤波处理了。但是,还有一点需要注意的地方。使用某个一维信号来举例子,一维信号的傅里叶变换是以2π为周期的函数。所以,我们常常使用的范围[-π,π]来表示这个信号的傅里叶变换,如下所示。
这样做的好处是,靠近0的成分就是低频,靠近-π与π的成分就表示高频。而对于图像而言,在Matlab中,我们使用fft2()这个函数来求取图像的傅里叶变换。
- g = fft2(f);
很显然,这并不是希望的范围,下面这个代码可以求取[0,2π]内的傅里叶变换。
- P = 2*M;
- Q = 2*N;
- F = fft2(f,P,Q);
我们需要对其移动一下,如下图所示,我们需要的是粉色范围的区域。
下面,从数学上分析一下,如何获得这个部分的频谱。对于傅里叶变换,有如下性质。
这个特性称为平移特性,粉色部分的频谱,将带入上式,我们可以得到如下式子。
为次,我们已经得到了粉色范围的频谱。越靠近傅里叶频谱图像中间的成分,代表了低频成分。其Matlab代码如下所示。
- [M,N] = size(f);
- P = 2*M;
- Q = 2*N;
- fc = zeros(M,N);
- for x = 1:1:M
- for y = 1:1:N
- fc(x,y) = f(x,y) * (-1)^(x+y);
- end
- end
- F = fft2(fc,P,Q);
代码所得到的结果,如下图所示。
接下来,我们总结一下频域滤波的步骤:
①:先将图像做频域内的水平移动,然后求原图像f(x,y)的DFT,得到其图像的傅里叶谱F(u,v)。
②:与频域滤波器做乘积,
③:求取G(u,v)的IDFT,然后再将图像做频域内的水平移动(移动回去),其结果可能存在寄生的虚数,此时忽略即可。
④:这里使用ifft2函数进行IDFT变换,得到的图像的尺寸为PxQ。切取左上角的MxN的图像,就能得到结果了。
2.低通滤波器
2.1理想的低通滤波器
其中,D0表示通带的半径。D(u,v)的计算方式也就是两点间的距离,很简单就能得到。
使用低通滤波器所得到的结果如下所示。低通滤波器滤除了高频成分,所以使得图像模糊。由于理想低通滤波器的过度特性过于急峻,所以会产生了振铃现象。
2.2巴特沃斯低通滤波器
同样的,D0表示通带的半径,n表示的是巴特沃斯滤波器的次数。随着次数的增加,振铃现象会越来越明显。
2.3高斯低通滤波器
3.实现代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
|
来自CODE的代码片
Butterworth_Lowpass_Filters.m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
|
来自CODE的代码片
Gaussian_Lowpass_Filters.m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|