def classify0(inX, dataSet, labels, k): #inX is input vector, dataSet is training set 用于分类的输入向量是inX,输入的训练样本集为dataSet,标签向量为labels,最后的参数k表示用于选择最近邻居的数目
dataSetSize = dataSet.shape[0] #返回行数
diffMat = tile(inX, (dataSetSize,1)) - dataSet #tile创建datasetsize维数组
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)#axis=1表示按行相加
distance = sqDistances ** 0.5
sortedDistIndicies = distance.argsort()#数据按照从小到大的次序排序,argaort返回排序后元素在原对象中的下标
classCount = {} #建立label:label出现次数字典
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(),
key = operator.itemgetter(1),reverse = True)
#将classCount字典分解成元组列表,然后使用程序第二行导入运算符模块的itemgetter方法,按照第二个元素的次序对元组进行排序
return sortedClassCount[0][0]
##k-近邻算法是基于实例的学习,使用算法时必须有接近实际数据的训练样本数据。
#k-近邻算法必须保存全部数据集,如果训练数据集很大,必须使用大量的存储控件。此外,由于必须对数据集中的每个数据计算距离值,实际使用时可能非常耗时。
#k-近邻算法的另一个缺陷是它无法给出任何数据的基础结构信息,因此我们也无法知晓平均实例样本和典型实例样本具有社么特征
测试数据所在分类
kNN.classify([0,0],group,labels,3)