# A logit (also called a score) is a raw unscaled value associated with a class.
# 多分类问题 输入标签需要Onehot编码 输出logits向量
tf.nn.softmax_cross_entropy_with_logits
# 多分类问题 输入标签不必Onehot编码 输出logits向量
tf.nn.sparse_softmax_cross_entropy_with_logits
# 多分类问题 输入标签需要Onehot编码 输出loss值
tf.losses.softmax_cross_entropy
# 多分类问题 输入标签不必Onehot编码 输出loss值
tf.losses.sparse_softmax_cross_entropy
# DEPRECATED
tf.contrib.losses.softmax_cross_entropy
tf.conbrib.losses.sparse_softmax_cross_entropy
# 关系
tf.losses.softmax_cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits)
# 有权重
tf.losses.softmax_cross_entropy(weight=W) = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits*W)
# The sigmoid is a partial case of the softmax function
# 二分类
tf.nn.sigmoid_cross_entropy_with_logits
tf.nn.weighted_cross_entropy_with_logits(labels, logits, pos_weight, name=None)
tf.losses.sigmoid_cross_entropy
tf.contrib.losses.sigmoid_cross_entropy(DEPRECATED)