数论四大定理

45 篇文章 0 订阅
28 篇文章 0 订阅

( m o d p ) \pmod p (modp),表示 恒等式两边同时对 p p p取模,即恒等式两边同余


一、威尔逊定理

  • p p p为质数,则有: ( p − 1 ) ! ≡ − 1 ( m o d p ) (p-1)!\equiv -1\pmod p (p1)!1(modp)
    或写成: ( p − 1 ) ! ≡ p − 1 ( m o d p ) (p-1)!\equiv p-1\pmod p (p1)!p1(modp)

  • 同时这是 p p p为质数的充分必要条件

应用:

由于阶乘一般很大,以此判断 p p p是否为质数并不现实(还不如常规的 O ( N ) O(\sqrt N) O(N )判断方法),但是可以用于解决一些直接要求 求解 m o d    p mod\;p modp下的阶乘的问题。




二、欧拉定理

  • a a a n n n互质(即 gcd ⁡ ( a , n ) = 1 \gcd(a,n)=1 gcd(a,n)=1),则有: a φ ( n ) ≡ 1 ( m o d n ) a^{\varphi(n)}\equiv1\pmod n aφ(n)1(modn)
  • 其中 欧拉函数 φ ( n )    ( n ∈ N ∗ ) \varphi(n)\;(n\isin N^*) φ(n)(nN):小于等于 n n n的正整数中与 n n n互质的数的个数。(规定 φ ( 1 ) = 1 \varphi(1)=1 φ(1)=1

欧拉函数:https://blog.csdn.net/Ratina/article/details/98461732
欧拉降幂:https://blog.csdn.net/Ratina/article/details/98469932




三、费马小定理

  • p p p为质数,且 a a a p p p互质(即 gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1),则有: a p − 1 ≡ 1    ( m o d p ) a^{p-1}\equiv1\;\pmod p ap11(modp)
  • 推论①: a N ≡ a N m o d    ( p − 1 ) ( m o d p ) a^N\equiv a^{N\mod(p-1)}\pmod p aNaNmod(p1)(modp),其中 N N N为正整数 p p p为质数 a a a p p p互质
  • 推论②: a × a p − 2 ≡ 1    ( m o d p ) ⇒ a\times a^{p-2}\equiv1\;\pmod p\rArr a×ap21(modp) a a a ( m o d p ) \pmod p (modp)下的逆元是 a p − 2 a^{p-2} ap2,其中 p p p为质数 a a a p p p互质

其实当 p p p为质数时,只要 a ≠ p a\neq p a̸=p a a a p p p是一定互质的,所以条件可以改为:若 p p p为质数,且 a ≠ p a\neq p a̸=p

其实费马小定理就是欧拉定理的一个特例,因为 当p为质数时,显然 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1,代入欧拉定理就得到了费马小定理。

应用:

利用推论①,可以进行 降幂(当 p p p为质数) 操作,
例如: 2 1000 ≡ 2 1000 m o d    ( 7 − 1 ) ≡ 2 4 ( m o d 7 ) 2^{1000}\equiv2^{1000\mod(7-1)}\equiv2^4\pmod 7 2100021000mod(71)24(mod7)

利用推论②,结合快速幂可以很快求得单个逆元,具体可以看这篇blog:https://www.cnblogs.com/812-xiao-wen/p/10500580.html




四、孙子定理(中国剩余定理)

https://blog.csdn.net/Ratina/article/details/100083832

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值