立体匹配算法实现之:AdaptWeight

本文介绍了一种在计算机视觉领域具有里程碑意义的局部立体匹配算法——AdaptiveWeight。该算法通过为匹配窗口中的每个像素分配一个根据颜色差和距离计算得出的权重,实现了高效的图像分割。文章详细阐述了其原理及实验结果。
摘要由CSDN通过智能技术生成

from: http://blog.sina.com.cn/s/blog_500afcd40100lqi1.html


 我的主要研究方向是立体匹配(Stereo Matching),是计算机视觉(Computer Vision)下的一个研究热点。研究匹配有一年多了,对这方面(特别是局部算法)比较了解,以后会陆续发布我已经实现的经典算法以及我自己设计的算法。深知在孤立无援时一个人探索有多么困苦,网络之大,说不定就帮了谁。

  如有疑问,请留言。如需代码 见参照下面的matlab版本

算法简称: AdaptWeight
    全称: Adaptive Weight -- 自适应权重
出自论文: 2005年发表在会议CVPR上 --
       Locally Adaptive Support-Weight Approach for Visual Correspondence Search。
           2006年稍作改动发表在杂志 IEEE TPAMI上 --
       Adaptive Support-Weight Approach for Correspondence Search
    作者: Kuk-Jin Yoon and In-So Kweon 韩国人


算法简介

  局部立体匹配算法中里程碑式的作品。从CVPR和PAMI就能看出它的分量。AdaptiveWeight的方法一经提出,正式宣告在匹配精度方面,自适应窗口算法(Adaptive Window)的彻底out。并在之后广为流行起来。
  核心思想是为匹配窗口中的每个像素赋予一个权值,权值是根据它们与窗口中心点的颜色差和距离得到的。本质上是完成了一种近似的图像分割。

 

实验结果
  对4幅标准实验图使用该算法,结果如下。
  参数很重要,这里选择的 rc=13,rp=31,比用原文提供的参数效果更好。

  注:未做左右检测。



算法评论
  方法就是一个词简单。思想简单,易于实现。作者只是把前人早就提出的一个东西应用在了匹配中,可以说是照搬。看懂了论文你甚至会觉得没什么东西,但是有些好论文就是这样看起来不起眼,实际上很有意义。所谓的宝贝不也是放对了地方的垃圾吗?那你怎么不是第一个把垃圾整理到地方的?
  我发现这俩韩国人就专爱干这种事,发表这篇文章后他们把另一个小技术应用到匹配中又发了篇好文章。。
  能嫁接好也是一种本事…嫁接确实是科研的一个重要方法。



Matlab code: http://www.mathworks.com/matlabcentral/fileexchange/22445-region-based-stereo-matching-algorithms


评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值