数字图像处理专题
数字图像处理相关知识和应用项目。
凌风探梅
这个作者很懒,什么都没留下…
展开
-
图像的表示和可视化
图像有视觉效果的客观对象的画面表示。例如,存储在不同介质上的拍摄作品,数码相机拍摄的照片。数字图像存储在计算或者各种电子设备中的、通过离散采样数据表示视觉画面的文件。数学定义 一副数字图像可以表示为一个二维函数f(x,y), x,y为空间坐标, f为图像在坐标(x,y)处的强度或者灰度。像素组成数字图像的元素,每个元素都有一个特定的位置和幅值。通常说的图像的分辨率原创 2017-01-02 11:33:36 · 1348 阅读 · 0 评论 -
黑白图像与灰度图像
灰度图像(通常意义上的黑白图像)图像的每个像素只有一个亮度信息的单色图像。其中的亮度信息,采样自从白色与黑色之间划分的若干等级。例如,下面两幅图像为灰度信息描述的图像。灰度阶: 从白色到黑色划分的等级数。一般为2^n,常用的灰度阶为256,用单个字节(8bit,256=2^8)就可以存储每一个灰度值。黑白图像真正的黑白图像(也称为二值图像)是由黑色和白色两种原创 2017-01-02 11:38:39 · 13319 阅读 · 1 评论 -
彩色图像和颜色空间
彩色图像顾名思义,为色彩比较丰富的图像,如下图所示。颜色空间计算机系统中表示现实世界各种颜色的色彩模型。常用的颜色空间有RGB,CMY,HSI等。不同的色彩空间只是同一物理量的不同表示法。RGB颜色空间主要用于计算机图形学中,依据人眼识别的颜色创建,图像中每一个像素都具有R,G,B三个颜色分量组成,这三个分量大小均为[0,255]。通常表示某个颜色的时候,写成一个3维向原创 2017-01-02 11:50:23 · 1767 阅读 · 0 评论 -
常见的图片格式
常见的图像格式1) BMP――(Bimap) Microsoft公司的点位图格式, 支持1~24bit色彩,BMP格式无损保存图像每个像素的信息,因此文件也比较大。2) GIF―― (Graphics Interchange Format)只支持256色,支持透明背景和动画。3) PNG―― 网景公司开发,支持24bit色彩, 压缩不失真并支持透明背景和变显图像的。4) TIFF—原创 2017-01-02 15:05:51 · 1452 阅读 · 0 评论 -
图像的采样和量化
采样和量化图像的获取(数字化)是通过传感器完成的,获取包含采样和量化两个过程采样是对现实空间场景(坐标的)离散化形成数字化表示的过程。(也就是用空间上部分点的灰度值代表图像,这些点称为采样点。)模拟图像经过采样后,在时间和空间上离散化为像素。但采样所得的像素值(即灰度值)仍是连续量。把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化(也就是原创 2017-01-02 23:57:46 · 13168 阅读 · 0 评论 -
基于权因子的图像融合
基于权因子的图像融合原创 2016-10-09 15:12:13 · 1418 阅读 · 0 评论 -
多频段图像融合
多频段图像融合转载 2016-10-09 15:14:38 · 5608 阅读 · 0 评论 -
泊松图像融合(泊松融合)
泊松图像融合(泊松融合)转载 2016-10-09 15:15:53 · 4519 阅读 · 1 评论 -
数字图像处理的三个层次
数字图像处理分为三个层次:低级图像处理、中级图像处理和高级图像处理。(1)低级图像处理内容内容:主要对图象进行各种加工以改善图象的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。特点:输入是图像,输出也是图像,即图像之间进行的变换。(2)中级图像处理内容:主要对图像中感兴趣的目标进行检测(或分割)和测量,以获原创 2016-09-08 13:45:17 · 22429 阅读 · 1 评论 -
数字图像处理目录列表
基础知识,颜色空间与彩色图像,灰度变换与空间滤波,频率域滤波,图像分割,小波和多分辨率,图像压缩,形态学,图像复原与重建,表示和描述,目标检测&目标识别&追踪算法,特征提取&图像检索&分类识别,机器学习,深度学习,增强现实,图像滤镜,视频特效,指纹识别&破解,其他生物特性识别,图像融合,图像拼接全景拼接,OCR文字识别,条形码二维码,高动态范围图像HDR图像,图像放大缩小和超分辨率原创 2016-09-26 15:31:33 · 3847 阅读 · 0 评论 -
DeeoID:Deep learning face representation from predicting 10,000 classes
DeeoID:Deep learning face representation from predicting 10,000 classes原创 2016-10-09 14:48:18 · 1895 阅读 · 0 评论 -
DeepID2:Deep Learning Face Representation by Joint Identification-Verification
DeepID2:Deep Learning Face Representation by Joint Identification-Verification原创 2016-10-09 14:49:03 · 1689 阅读 · 0 评论 -
DeepID2+:Deeply Learned Attributes for Crowded Scene Understanding
DeepID2+:Deeply Learned Attributes for Crowded Scene Understanding原创 2016-10-09 14:49:48 · 1658 阅读 · 0 评论 -
DeepID3:Face Recognition with Very Deep Neural Networks
DeepID3:Face Recognition with Very Deep Neural Networks原创 2016-10-09 14:50:31 · 3305 阅读 · 0 评论 -
高动态范围图像-单图
高动态范围图像-单图原创 2016-10-18 08:40:28 · 2159 阅读 · 0 评论 -
高动态范围图像-多图
高动态范围图像-多图原创 2016-10-18 08:40:58 · 3145 阅读 · 0 评论