优化问题之拉格朗日乘子法&KKT条件分析

优化问题

  1. 无约束优化问题

    min ⁡ f ( x ) \min f(x) minf(x),由Fermat’s theorem可知,可微函数的极值点都是其驻点(必要条件),故令其导数为零即可求解,当然也可利用梯度下降算法求解;

  2. 等式约束优化问题

    min ⁡ f 0 ( x ) ,    s . t . ,   h i ( x ) = 0 ,   i = 1 , 2 , ⋯   , p \min f_0(x),\ \ s.t.,\ h_i(x)=0,\ i=1, 2,\cdots, p minf0(x),  s.t., hi(x)=0, i=1,2,,p对于这种情形我们常使用拉格朗日乘子法(Lagrange multiplier)求解;

  3. 不等式约束优化问题

    min ⁡ f 0 ( x ) \min f_0(x) minf0(x)

    s . t . ,   h i ( x ) = 0 , i = 1 , 2 , ⋯   , p s.t.,\ h_i(x)=0,i=1, 2,\cdots,p s.t., hi(x)=0,i=1,2,,p

    f i ( x ) ≤ 0 , i = 1 , 2 , ⋯   , m , f_i(x)\leq 0,i=1,2,\cdots,m, fi(x)0,i=1,2,,m,

    对于这种情形我们常使用KKT条件求解,Lagrange 函数L: R n × R m × R p → R R^n\times R^m\times R^p\rightarrow R Rn×Rm×RpR L ( x , λ , v ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p v i h i ( x ) , L(x, \lambda,\mathcal v)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^pv_ih_i(x), L(x,λ,v)=f0(x)+i=1mλifi(x)+i=1pvihi(x),我们假设该问题的定义域(非可行域)为 D = ⋂ i = 0 m d o m f i ∩ ⋂ i = 1 p d o m h i , 且原问题的最优值为 p ∗ \mathcal D=\bigcap_{i=0}^m\mathbf{dom}f_i\cap\bigcap_{i=1}^p\mathbf{dom}h_i,且原问题的最优值为p^* D=i=0mdomfii=1pdomhi,且原问题的最优值为p另外我们定义Lagrange 对偶函数g: R m × R p → R R^m\times R^p\rightarrow R Rm×RpR为Lagrange函数关于定义域内 x x x取得的最小值,即, g ( λ , v ) = i n f x ∈ D L ( x , λ , v ) = i n f x ∈ D ( f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p v i h i ( x ) ) ) g(\lambda, v)={inf}_{x\in\mathcal D}L(x,\lambda,v)=inf_{x\in\mathcal D}\left(f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^pv_ih_i(x))\right) g(λ,v)=infxDL(x,λ,v)=infxD(f0(x)+i=1mλifi(x)+i=1pvihi(x)))我们可以得出对偶函数构成了原问题最优值 p ∗ p^* p的下界,即, ∀ λ ⪰ 0 , v ,    g ( λ , v ) ≤ p ∗ . \forall\lambda\succeq 0,v,\ \ g(\lambda, v)\leq p^*. λ0,v,  g(λ,v)p. x ∗ 和 ( λ ∗ , v ∗ ) x^*和(\lambda^*,v^*) x(λ,v)分别为原问题和对偶问题的某对最优解,且满足强对偶性(对偶间隙为零),那么我们就可以得到, f 0 ( x ∗ ) = g ( λ ∗ , v ∗ ) f_0(x^*)=g(\lambda^*,v^*) f0(x)=g(λ,v)。另外,KKT
    KKT为, { f i ( x ∗ ) ≤ 0 , i = 1 , 2 , ⋯   , m h i ( x ∗ ) = 0 , i = 1 , 2 , ⋯   , p λ i ∗ ≥ 0 , i = 1 , 2 , ⋯   , m λ i ∗ f i ( x ∗ ) = 0 , i = 1 , 2 , ⋯   , m ∇ f 0 ( x ∗ ) + ∑ i = 1 m λ i ∗ ∇ f i ( x ∗ ) + ∑ i = 1 p v i ∗ ∇ h i ( x ∗ ) = 0 , ∗ \left\{\begin{array}{lr}f_i(x^*)\leq 0,&i=1,2,\cdots,m\\h_i(x^*)=0,&i=1,2,\cdots,p\\\lambda^*_i\geq0,&i=1,2,\cdots,m\\\lambda_i^*f_i(x^*)=0,&i=1,2,\cdots,m\\\nabla f_0(x^*)+\sum_{i=1}^m\lambda_i^*\nabla f_i(x^*)+\sum_{i=1}^pv_i^*\nabla h_i(x^*)=0,&*\end{array}\right. fi(x)0,hi(x)=0,λi0,λifi(x)=0,f0(x)+i=1mλifi(x)+i=1pvihi(x)=0i=1,2,,mi=1,2,,pi=1,2,,mi=1,2,,m
    注,对于上面的所有情况的优化问题,目标函数及其约束函数若为凸函数,可行域组成凸集,才能得到全局最优解,否则只能得到局部最优解,因为这些条件只是必要条件,而非充要条件。。。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值