全局特征(global features)是指在整个输入范围内捕获的信息,而不是局部区域的特征。在计算机视觉和深度学习中,全局特征通常表示对整个图像或数据集的整体统计信息或结构性信息。
具体来说,全局特征可能包括整个图像的颜色直方图、纹理统计、形状信息等。对于神经网络和深度学习模型而言,全局特征通常是在整个输入空间上计算的特征,而不仅仅是对局部区域的响应。
在车道检测的上下文中,使用全局特征可能意味着模型考虑整个图像的信息,而不仅仅是关注局部区域。这对于解决一些问题,如处理无视觉线索的情况,具有更大的感受野和更全局的视角,有助于更好地理解整体结构和上下文。
因此,全局特征的使用通常是为了提高模型的鲁棒性,使其更好地适应各种场景和问题。