gibbs效应

图像的付立叶变换 ,由于其变换本身有多种成熟的快速算法(FFT算法),而且性能接近于最佳,从而获得较早的也比较广泛的研究。它的不足之处在于 :相邻子图像数据在各个边界不连续造成的所谓Gibbs现像。这是由于图像数据的二维付立叶变换实质上是一个二维图像的付立叶展开式。当然这个二维图像应 被认为是周期性的。由于子图像的变换系数在边界不连续 ,而将造成复原的子图像在其边界也不连续 。于是由复原子图像构成的整幅复原图像将呈现隐约可见的以子图像尺寸为单位的方块状结构,影响整个图像质量 。当子图像尺寸较小时更为严重。解决这个Gibbs现像的方法是后来研究出来的二维余弦变换(DCT)代替二维付立叶变换。基本思路为:用一个对称的 2N*2N 像素的子图像代替原来N*N 子图像。由于对称性, 子图像作二维付立叶变换,其变换系数将只剩下实数的余弦项。这样,即可消除Gibbs现像。 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值