连续周期信号傅里叶级数

数学家傅里叶猜想任何一个周期函数均可分解为一系列不同振幅、不同频率和不同相位的正弦函数的组合(由此,复杂的周期函数可分解为若干简单的三角函数,易于分析和处理)。即:

f(t)=C+\sum_{k=1}^{\infty}A_{k}sin(kw_{0}t+\varphi_{k})

其中,C是常数项,也可理解为振幅为0的三角函数,其频率和相位任意;A_{k}kw_{0}\varphi _{k}表示正弦函数k的振幅、角频率和相位(w_{0}为基频,即为角频率的最小单元)。k取值从1到无穷大。因此,傅里叶级数也就是一个无穷级数。

接着我们利用两角和公式sin(A+B)=sin(A)cos(B)+cos(A)sin(B)对上式做分解,得到:

f(t)=C+\sum_{k=1}^{\infty }A_{k}cos(\varphi _{k})sin(kw_{0}t)+\sum_{k=1}^{\infty}A_{k}sin(\varphi _{k})cos(kw_{0}t)

A_{k}cos(\varphi _{k})=a_{k}A_{k}sin(\varphi _{k})=b_{k},得到f(t)的傅里叶级数表达式:

f(t)=C+\sum_{k=1}^{\infty }a_{k}sin(kw_{0}t)+\sum_{k=1}^{\infty}b_{k}cos(kw_{0}t)

如果上式中的系数C、ak和bk可解,则f(t)可分解为一系列简单的三角函数。

我们选择正弦函数k中最大的周期max(\frac{2\pi}{kw_{0}})=\frac{2\pi}{w_{0}}作为积分区间(保证所有的三角函数在此区间内积分为0)。对f(t)的傅里叶级数表达式在[0,\frac{2\pi}{w_{0}}]内积分得:

\int_{0}^{\frac{2\pi}{w_{0}}}f(t)dt=\int_{0}^{\frac{2\pi}{w_{0}}}Cdt+\sum_{k=1}^{\infty}a_{k}\int_{0}^{\frac{2\pi}{w_{0}}}sin(kw_{0}t)dt+\sum_{k=1}^{\infty}b_{k}\int_{0}^{\frac{2\pi}{w_{0}}}cos(kw_{0}t)dt\\ =C\frac{2\pi}{w_{0}}+\sum_{k=1}^{\infty}a_{k}0+\sum_{k=1}^{\infty}b_{k}0\\ =C\frac{2\pi}{w_{0}}

因此,系数C得解:

C=\frac{w_{0}}{2\pi}\int_{0}^{\frac{2\pi}{w_{0}}}f(t)dt

接着f(t)的傅里叶级数表达式左右两边同时乘以cos(nw_{0}t),得到:

cos(nw_{0}t)f(t)=Ccos(nw_{0}t)+\sum_{k=1}^{\infty}a_{k}sin(kw_{0}t)cos(nw_{0}t)+\sum_{k=1}^{\infty}b_{k}cos(kw_{0}t)cos(nw_{0}t)

对上式在[0,\frac{2\pi}{w_{0}}]内积分得:

\int_{0}^{\frac{2\pi}{w_{0}}}cos(nw_{0}t)f(t)dt=C\int_{0}^{\frac{2\pi}{w_{0}}}cos(nw_{0}t)dt+\sum_{k=1}^{\infty}a_{k}\int_{0}^{\frac{2\pi}{w_{0}}}sin(kw_{0}t)cos(nw_{0}t)dt+\sum_{k=1}^{\infty}b_{k}\int_{0}^{\frac{2\pi}{w_{0}}}cos(kw_{0}t)cos(nw_{0}t)dt=\frac{b_{n}}{2}\frac{2\pi}{w_{0}}

因此,系数b_{n}得解:

b_{n}=\frac{w_{0}}{\pi}\int_{0}^{\frac{2\pi}{w_{0}}}cos(nw_{0}t)f(t)dt

接着f(t)的傅里叶级数表达式左右两边同时乘以sin(nw_{0}t),得到:

sin(nw_{0}t)f(t)=Csin(nw_{0}t)+\sum_{k=1}^{\infty}a_{k}sin(kw_{0}t)sin(nw_{0}t)+\sum_{k=1}^{\infty}b_{k}cos(kw_{0}t)sin(nw_{0}t)

对上式在[0,\frac{2\pi}{w_{0}}]内积分得:

\int_{0}^{\frac{2\pi}{w_{0}}}sin(nw_{0}t)f(t)dt=C\int_{0}^{\frac{2\pi}{w_{0}}}sin(nw_{0}t)dt+\sum_{k=1}^{\infty}a_{k}\int_{0}^{\frac{2\pi}{w_{0}}}sin(kw_{0}t)sin(nw_{0}t)+\sum_{k=1}^{\infty}b_{k}cos(kw_{0}t)sin(nw_{0}t)=\frac{a_{n}}{2}\frac{2\pi}{w_{0}}

因此,系数an得解:

a_{n}=\frac{w_{0}}{\pi}\int_{0}^{\frac{2\pi}{w_{0}}}sin(nw_{0}t)f(t)dt

至此,已经得到傅里叶级数中各系数的表达式(如下),只要它们可积分,即C、an和bn可解,那么就可得到了函数f(t)的傅里叶级数。

f(t)=C+\sum_{k=1}^{\infty}a_{k}sin(kw_{0}t)+\sum_{k=1}^{\infty}b_{k}cos(kw_{0}t)

\left\{\begin{matrix} C=\frac{w_{0}}{2\pi}\int_{0}^{\frac{2\pi}{w_{0}}}f(t)dt\\ a_{n}=\frac{w_{0}}{\pi}\int_{0}^{\frac{2\pi}{w_{0}}}sin(nw_{0}t)f(t)dt\\ b_{n}=\frac{w_{0}}{\pi}\int_{0}^{\frac{2\pi}{w_{0}}}cos(nw_{0}t)f(t)dt\\ \end{matrix}\right.

傅里叶级数的复数形式

为此,我们需要引入欧拉公式。其构建了三角函数和复数之间的桥梁,如下:

e_{ix}=cosx+isinx

其中,i=\sqrt{-1}。替换上式中的x为-x,得到e_{-ix}=cos(-x)+isin(-x)=cosx-isinx。得到:

\left\{\begin{matrix} cosx=\frac{e^{ix}+e^{-ix}}{2}\\ sinx=\frac{e^{ix}-e^{-ix}}{2i}\\ \end{matrix}\right.

将上式代入三角函数形式的傅里叶级数中:

f(t)=C+\sum_{k=1}^{\infty}a_{k}sin(kw_{0}t)+\sum_{k=1}^{\infty}b_{k}cos(kw_{0}t)\\ =Ce^{i0w_{0}t}+\sum_{k=1}^{\infty}\frac{b_{k}-ia_{k}}{2}e^{ikw_{0}t}+\sum_{j=-1}^{-\infty}\frac{b_{-j}+ia_{-j}}{2}e^{ijw_{0}t}

观察上式,可以得到傅里叶级数的复数形式:

f(t)=\sum_{k=-\infty}^{\infty}X_{k}e^{ikw_{0}t}

k\geqslant 1时:

X_{k}=\frac{b_{k}-ia_{k}}{2}=\frac{w_{0}}{2\pi}\int_{0}^{\frac{2\pi}{w_{0}}}f(t)(cos(kw_{0}t)-isin(kw_{0}t))dt=\frac{w_{0}}{2\pi}\int_{0}^{\frac{2\pi}{w_{0}}}f(t)e^{-ikw_{0}t}dt

k=0时:

X_{k}=C=\frac{w_{0}}{2\pi}\int_{0}^{\frac{2\pi}{w_{0}}}f(t)dt=\frac{w_{0}}{2\pi}\int_{0}^{\frac{2\pi}{w_{0}}}f(t)e^{-i0w_{0}t}dt

k\leqslant -1时,令j=-k:X_{k}=\frac{b_{-k}+ia_{-k}}{2}=\frac{b_{j}+ia_{j}}{2}=\frac{w_{0}}{2\pi}\int_{0}^{\frac{2\pi}{w_{0}}}f(t)(cos(jw_{0}t)+isin(jw_{0}t))dt\\ \frac{w_{0}}{2\pi}\int_{0}^{\frac{2\pi}{w_{0}}}f(t)e^{ijw_{0}t}dt=\frac{w_{0}}{2\pi}\int_{0}^{\frac{2\pi}{w_{0}}}f(t)e^{-ikw_{0}t}dt

至此,已经得到复数形式的傅里叶级数中系数的表达式(如下),只要它们可积分,即X_{k}可解,那么就得到了函数f(t)的复数形式的傅里叶级数。

f(t)=\sum_{k=-\infty}^{\infty}X_{k}e^{ikw_{0}t}

其中,X_{n}=\frac{w_{0}}{2\pi}\int_{0}^{\frac{2\pi}{w_{0}}}f(t)e^{-inw_{0}t}dt

 

https://blog.csdn.net/u012841922/article/details/81335270

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值