问题描述
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000。
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例
8
解法
二维动态规划思路
记 f[i][j] 为:体积为j的前i个物品的最大价值
则有选第i个物品和不选第i个物品
若不选第i个物品,则有:
f[i][j] = f[i-1][j]
若选第i个物品,则有:
f[i][j] = max(f[i][j] , f[i-1][j-v[i]]
Python代码实现–二维动态规划
n , m = list(map(int,input().split()))
v , w = [0]*1010 , [0]*1010
f = [[0]*1010 for _ in range(1010)]
for i in range(1,n+1):
v[i] , w[i] = list(map(int,input().split()))
for i in range(1,n+1):
for j in range(m+1):
f[i][j] = f[i-1][j]
if j >= v[i]:
f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i])
res = 0
for i in range(m+1):
res = max(res,f[n][i])
print(res)
代码优化–一维动态规划思路
因f[i][*]只与f[i-1][*]有关,故可以降维
又因从小到大遍历则之前的状态超前更新,故这里需要从大到小遍历
Python代码实现–一维动态规划
n , m = list(map(int,input().split()))
v , w = [0]*1010 , [0]*1010
f = [0]*1010
for i in range(1,n+1):
v[i] , w[i] = list(map(int,input().split()))
for i in range(1,n+1):
for j in range(m, v[i]-1, -1):
f[j] = max(f[j],f[j-v[i]]+w[i])
print(f[m])
本文介绍了背包问题的动态规划解决方案,包括二维动态规划和一维动态规划的思路及Python代码实现。通过优化,将二维动态规划降维为一维,提高了算法效率。最终输出能装入背包并达到最大价值的物品选择方案。

331

被折叠的 条评论
为什么被折叠?



