YOLOv8在PyTorch、ONNXRuntime、OpenVINO框架下的推理性能对比

文章分析了YOLOv8在PyTorch、ONNXRuntime和OpenVINO框架下的资源占用与推理效率,适合了解深度学习模型在机器人感知任务中的性能差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

YOLOv8是一个广泛使用的目标检测、图像分割工具,笔者在机器人感知任务中也曾有所应用。目前深度学习的部署框架也有很多,各有优势,这里针对三个常用的部署框架:PyTorch、ONNXRuntime、OpenVINO对YOLOv8的推理进行一个资源占用和推理效率的比较。

依赖

PyTorch2.0、ONNXRuntime、OpenVINO
笔者的算力较低:NVIDIA GeForce MX250,2G显存
YOLOv8项目直接提供PyTorch、ONNXRuntime、OpenVINO推理引擎文件

代码

PyTorch推理
import time
import os
from ultralytics import YOLO

# Load a pretrained YOLOv8n model
model = YOLO('/home/lz/yolov5/runs/train/best_20230921switch.pt')

inference_time = []

# Define path to the image file
source_dir = '/home/lz/yolov5/data/robot_arm_vision/fps_test'
sources = [f for f in os.listdir(source_dir)]

for source in sources:
    image = os.path.join(source_dir, source)
    start_time = time.time()
    results = model(image, imgsz=1280)  # list of Results objects
    end_time = time.time()
    inference_time.append(end_time-start_time)
average_inference_time = sum(inference_time) / len(inference_time)
print(f"Inference time is {
     average_inference_time} seconds")
fps = 1.0 / average_inference_time
print
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值