DAY4学习笔记

本文介绍了如何通过交叉验证对KNeighborsClassifier模型进行超参数调整,如n_neighbors的选择。通过GridSearchCV实现网格搜索,结合数据集划分,确保模型的可靠性和性能优化。
摘要由CSDN通过智能技术生成

1.交叉验证

什么是交叉验证?
是一种数据集的分割方法,将训练集划分为n份,拿一份做验证集(测试集)、其他n-1份做训练集

交叉验证法原理:将数据集划分为 cv=4 份
第一次:把第一份数据做验证集,其他数据做训练1.
第二次:把第二份数据做验证集,其他数据做训练2.
…以此类推,总共训练4次,评估4次。3.
4.使用训练集+验证集多次评估模型,取平均值做交叉验证为模型得分5.若k=5模型得分最好,再使用全部训练集(训练集+验证集) 对k=5模型再训练一边,再使用测试集对k=5模型做评估

网格搜索
为什么需要网格搜索?
·模型有很多超参数,其能力也存在很大的差异。需要手动产生很多超参数组合,来训练型每组超参数都采用交叉验证评估,最后选出最优参数组合建立模型。
网格搜索是模型调参的有力工具。寻找最优超参数的工具!只需要将若干参数传递给网格搜索对象,它自动帮我们完成不同超参数的组合、模型训练、模型评估最终返回一组最优的超参数。
网格搜索+交叉验证的强力组合(模型选择和调优)
·交叉验证解决模型的数据输入问题(数据集划分)得到更可靠的模型网格搜索解决超参数的组合
·两个组合再一起形成一个模型参数调优的解决方案

# 1.加载数据
from sklearn.datasets import load_iris
iris_data=load_iris()
# 2.数据划分
from sklearn.model_selection import train_test_split
x_train,x_text,y_train,y_text=train_test_split(iris_data.data,iris_data.target,train_size=0.3,random_state=22)
# 3.数据预处理
from sklearn.preprocessing import StandardScaler
transfer=StandardScaler()
x_train=transfer.fit_transform(x_train)
x_text=transfer.fit_transform(x_text)
# 4.实例化
from sklearn.neighbors import KNeighborsClassifier
estimator1=KNeighborsClassifier(n_neighbors=3)
estimator2=KNeighborsClassifier(n_neighbors=4)
estimator3=KNeighborsClassifier(n_neighbors=5)
# 5.交叉验证
from sklearn.model_selection import GridSearchCV
estimator=GridSearchCV(estimator=estimator1,param_grid={'n_neighbors':[1,3,5,7]},cv=5)
estimator.fit(x_train,y_train)
estimator1.fit(x_train,y_train)
estimator2.fit(x_train,y_train)
estimator3.fit(x_train,y_train)
# print(f'estimator.best_params_:{estimator.best_params_}')
# 6.模型训练及评估
import pandas as pd
cvresults=pd.DataFrame(estimator.cv_results_)
cvresults.to_csv(path_or_buf='./cvresult.csv')

score=estimator.score(x_text,y_text)
print(f'score-->{score}')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值