Lasso(Least Absolute Shrinkage and Selection Operator)

1. Lasso是什么?

Lasso是一种线性回归的正则化方法,全称为最小绝对值收缩和选择算子(Least Absolute Shrinkage and Selection Operator)。通过在目标函数中加入L1正则化项,Lasso实现了以下两个主要目标:

  • 收缩(Shrinkage):将一些回归系数的绝对值缩小,防止模型过拟合。
  • 特征选择(Selection):将不重要的特征的回归系数压缩到0,从而自动选择重要特征。

Lasso由统计学家Robert Tibshirani于1996年提出,发表在《Journal of the Royal Statistical Society》上,是一种兼顾模型简化和预测精度的强大工具。

Lasso与普通线性回归的区别

普通线性回归的目标是优化最小二乘损失函数
min ⁡ β ∑ i = 1 n ( y i − y ^ i ) 2 = min ⁡ β ∑ i = 1 n ( y i − β 0 − ∑ j = 1 p β j x i j ) 2 \min_{\beta} \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \min_{\beta} \sum_{i=1}^n \left( y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 minβi=1n(yiy^i)2=minβi=1n(yiβ0j=1pβjxij)2
其中:

  • y i y_i yi:第 i i i 个样本的真实值;
  • y ^ i \hat{y}_i y^i:第 i i i 个样本的预测值;
  • β 0 \beta_0 β0:截距;
  • β j \beta_j βj:第 j j j 个特征的回归系数;
  • x i j x_{ij} xij:第 i i i 个样本的第 j j j 个特征值;
  • n n n:样本数量;
  • p p p:特征数量。

普通线性回归的问题在于:

  1. 当特征数量 p p p 很大时,模型容易过拟合。
  2. 无法自动选择重要特征,所有特征的系数均非零。
  3. 在特征之间存在多重共线性时,系数估计不稳定。

Lasso通过在损失函数中加入L1正则化项解决了这些问题。其目标函数为ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱看烟花的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值