机器学习与算法(10)--Lasso算法(least absolute shrinkage and selection operator)

Lasso算法,全称Least Absolute Shrinkage and Selection Operator,是一种结合特征选择和正则化的回归分析方法,由Robert Tibshirani在1996年提出。它通过一阶惩罚函数实现模型的精确度提升和可解释性增强,特别是在处理协变量共线性时。Lasso利用方形约束条件促进系数收缩,有效地筛选变量,对比岭回归,更易得到系数为0的情况,从而实现特征选择。
摘要由CSDN通过智能技术生成

                                                        Lasso算法

      Lasso算法(least absolute shrinkage and selection operator,又译最小绝对值收敛和选择算子、套索算法)是一种同时进行特征选择和正则化(数学)的回归分析方法,旨在增强统计模型的预测准确性和可解释性,最初由斯坦福大学统计学教授Robert Tibshirani于1996年基于Leo Breiman的非负参数推断(Nonnegative Garrote, NNG)提出[1][2]。

     Lasso算法最初用于计算最小二乘法模型,这个简单的算法揭示了很多估计量的重要性质,如估计量与岭回归(Ridge regression,也叫Tikhonov regularization)和最佳子集选择的关系,Lasso系数估计值(estimate)和软阈值(soft thresholding)之间的联系。它也揭示了当协变量共线时,Lasso系数估计值不一定唯一(类似标准线性回归)。Lasso是一种缩减方法,将回归系数收缩在一定的区域内。Lasso的主要思想是构造一个一阶惩罚函数获得一个精确的模型, 通过最终确定一些变量的系数为0进行特征筛选。以两个变量为例,标准线性回归的cost function还是可以用二维平面的等值线表示,而约束条件则与岭回归的圆不同,Lasso的约束条件可以用方形表示,如图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mensyne

你的鼓励是我写作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值