Page Rank和它的数学模型

本文介绍了PageRank算法的起源及其数学模型,该模型将互联网视为图论中的图,并利用矩阵运算进行迭代以确定网页的排名。拉里·佩奇和谢尔盖·布林通过将问题转化为二维矩阵相乘并利用稀疏矩阵计算技术,实现了这一突破性的网页排名算法。PageRank的核心是将互联网作为一个整体考虑,强调了网页间的链接关系,而非孤立看待每个网页。这一创新性思维至今仍具有重要影响力。
摘要由CSDN通过智能技术生成

昨天在Google黑板报上读到了一篇介绍Page Rank的文章,最让我感兴趣的是它的数学模型。Google 的创始人之一拉里•佩奇在谈到怎么想到网页排名算法时说:“当时我们觉得整个互联网就像一张大的图 (Graph),每个网站就像一个节点,而每个网页的链接就像一个弧。我想,互联网可以用一个图或者矩阵描述,我也许可以用这个发现做个博士论文。”

事实上,“Google 的两个创始人拉里•佩奇 (Larry Page )和谢尔盖•布林 (Sergey Brin) 把这个问题变成了一个二维矩阵相乘的问题,并且用迭代的方法解决了这个问题。”至于他们是如何把这个问题转化成矩阵相乘的,文中并没有详细介绍。我google了一下,发现了这两人在斯坦福大学的博士论文,文中介绍了PageRank的数学定义:

We

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值