又是一道题意杀…………
首先可以发现1号操作显然不能出现。
然后我们把所有单词倒着建一棵trie,去掉一些没有用的节点。比如说abbbb和bb这两个单词,abbbb的前两个b是多余的。所以最后留下来的树,每个节点(根节点除外)都代表了一个单词。所以题目就变成了给每个节点编号。
首先为了不出现1号操作,每个父亲节点的编号都必须比孩子编号小。然后显然就是一个dfs序(别告诉我为什么显然我也不知道TAT)
然后就要考虑优先访问那个孩子。其实这也是比较(不)显然的,一定优先访问size较小的子树。感性的想一想,如果有5个孩子1、2、3、4、5,当前访问1的子树的时候,每次访问到1的新孩子,2、3、4、5的编号就要统统向后移一位。
如果这都不够感性,那就想想打cf的时候,为什么从简单的做起分数高?一开始每道题目每分钟扣4分,一旦做出一道题,那么这道题的时间分就不会动了。放到这道题也是一个道理。(感觉写完这段自己就成了个傻逼)
然后。。。不要问我空间为什么顶着上限。。我已经分不清1e5和5e5了。
#include<cmath>
#include<cstdio>
#include<vector>
#include <queue>
#include<cstring>
#include<iomanip>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 1000000000
#define mod 1000000007
#define N 500050
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
char s[N];
int rt,n,i,tot;
ll res;
int son[N][30],tag[N],id[N],siz[N],num[N];
vector<int> sn[N/5];
void ins()
{
int len = strlen(s+1);
int p = rt; int i;
fd(i,len,1)
{
if (!son[p][s[i]-'a']) son[p][s[i]-'a'] = ++tot;
p = son[p][s[i]-'a'];
}
tag[p] = 1;
}
void dfs(int x)
{
int i;
if (tag[x]) {sn[id[x]].push_back(++tot); id[x] = tot;}
fo(i,0,25)
if (son[x][i])
{
id[son[x][i]] = id[x];
dfs(son[x][i]);
}
}
void dfs2(int x)
{
siz[x] = 1;
for (int i = 0;i < sn[x].size(); i++)
{
int t = sn[x][i];
dfs2(t); siz[x] += siz[t];
}
}
bool cmp(int x,int y) {return siz[x] < siz[y];}
void calc(int x)
{
sort(sn[x].begin(),sn[x].end(),cmp);
for (int i = 0;i < sn[x].size(); i++)
{
int t = sn[x][i];
num[t] = ++tot; res += num[t] - num[x];
calc(t);
}
}
int main()
{
scanf("%d",&n);
tot = rt = 1; fo(i,1,n) {scanf("%s",s+1); ins();}
id[1] = tot = 1; dfs(1);
dfs2(1);
tot = 0; calc(1);
printf("%lld\n",res);
return 0;
}