codeforces 789D Weird journey

       题意:给你n个点m条边,从一个点出发,要求选出2条边,走且只能走走一次,其他m-2条走且只能走两次,求有多少种选边方案,给出的边存在自环。

       作为一个欧拉路问题,存在的条件为奇点个数为0或2,我们可以对选的两条边进行分类讨论,为了方便阐述,我们说的边不包含自环。

       1.选两条相邻的边,那么由于其他的边都变成了两条所以都为偶点,那么对于两条相邻的边,那么他们两个的共点还是偶点,另外的端点产生了两个奇点,合法。

      2.选两条不相邻的边,产生了四个奇点,不合法。

      3.选了一个自环,选了一条边,出现了两个奇点,合法。

      4.选了两个自环,没有奇点,合法。

      假设有cnt个自环,m-cnt条不含自环的边,

      那么第一种方案的答案,就是枚举每一个点,和它连接的边有len条,那么答案就是(len)*(len-1)/2,

      第三种方法的答案就是cnt*(m-cnt)

      第四种方法的答案就是cnt*(cnt-1)/2

      最后由于还可能存在无解情况,即为有一个点只存在自环和其他点没有任何连边,那么这条边是永远无法走到的,所以无解。

     下附AC代码。

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define maxn 1000005
using namespace std;
typedef long long ll;
bool flag[maxn];
ll n,m,tot;
ll fa[maxn],cnt[maxn];
ll getfa(ll x)
{
	return fa[x]==x ? x : fa[x]=getfa(fa[x]);
}
int main()
{
	scanf("%I64d%I64d",&n,&m);
	
	ll temp=n;
	for(ll i=1;i<=n;i++)
	fa[i]=i;
	
	for(ll i=1;i<=m;i++)
	{
		ll x,y;
		scanf("%I64d%I64d",&x,&y);
		if(x==y)
			tot++,flag[x]=1;
		else
		{
			cnt[x]++;cnt[y]++;
			ll x1=getfa(x),y1=getfa(y);
			if(x1!=y1)
			{
				fa[x1]=y1;
				temp--;
			}
		}
	}
	
	for(int i=1;i<=n;i++)
	if(!cnt[i] && !flag[i])
	temp--;
	
	if(temp!=1)
	{
		printf("%d\n",0);
		return 0;
	}
	
	ll ans=0;
	for(ll i=1;i<=n;i++)
		ans+=(cnt[i]*(cnt[i]-1))/2;
	ans+=(tot*(m-tot));
	ans+=(tot*(tot-1))/2;
	printf("%I64d\n",ans);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值