题意:给你n个点m条边,从一个点出发,要求选出2条边,走且只能走走一次,其他m-2条走且只能走两次,求有多少种选边方案,给出的边存在自环。
作为一个欧拉路问题,存在的条件为奇点个数为0或2,我们可以对选的两条边进行分类讨论,为了方便阐述,我们说的边不包含自环。
1.选两条相邻的边,那么由于其他的边都变成了两条所以都为偶点,那么对于两条相邻的边,那么他们两个的共点还是偶点,另外的端点产生了两个奇点,合法。
2.选两条不相邻的边,产生了四个奇点,不合法。
3.选了一个自环,选了一条边,出现了两个奇点,合法。
4.选了两个自环,没有奇点,合法。
假设有cnt个自环,m-cnt条不含自环的边,
那么第一种方案的答案,就是枚举每一个点,和它连接的边有len条,那么答案就是(len)*(len-1)/2,
第三种方法的答案就是cnt*(m-cnt)
第四种方法的答案就是cnt*(cnt-1)/2
最后由于还可能存在无解情况,即为有一个点只存在自环和其他点没有任何连边,那么这条边是永远无法走到的,所以无解。
下附AC代码。
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define maxn 1000005
using namespace std;
typedef long long ll;
bool flag[maxn];
ll n,m,tot;
ll fa[maxn],cnt[maxn];
ll getfa(ll x)
{
return fa[x]==x ? x : fa[x]=getfa(fa[x]);
}
int main()
{
scanf("%I64d%I64d",&n,&m);
ll temp=n;
for(ll i=1;i<=n;i++)
fa[i]=i;
for(ll i=1;i<=m;i++)
{
ll x,y;
scanf("%I64d%I64d",&x,&y);
if(x==y)
tot++,flag[x]=1;
else
{
cnt[x]++;cnt[y]++;
ll x1=getfa(x),y1=getfa(y);
if(x1!=y1)
{
fa[x1]=y1;
temp--;
}
}
}
for(int i=1;i<=n;i++)
if(!cnt[i] && !flag[i])
temp--;
if(temp!=1)
{
printf("%d\n",0);
return 0;
}
ll ans=0;
for(ll i=1;i<=n;i++)
ans+=(cnt[i]*(cnt[i]-1))/2;
ans+=(tot*(m-tot));
ans+=(tot*(tot-1))/2;
printf("%I64d\n",ans);
}