关于扩展欧几里得的一些想法

本文介绍使用扩展欧几里得算法求逆元的方法,并给出逆元的定义及求解过程。通过数学推导,展示了如何利用该算法找到特定条件下的一组解,并进一步给出了解的通式。此外,还介绍了线性求解连续一段范围内所有数的逆元的高效方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

仅代表个人观点,如有雷同,一定是他抄我的。如有错误,那一定是你rp不好
  —— 我

  这次的博客是关于用扩展欧几里得求逆元的一些小技巧的感想。

推导扩展欧几里得的过程

f=gcd(a,b)
f=ax+by
f=gcd(a,b)=gcd(b,amodb)

f=bx+amodby=bx+(a(a/b)b)y/=bx+aya/bby=ay+b(xa/by)
对比上下两式可得
x=y
y=(xa/b)
到目前为止,推导差不多结束。
但是,发现x’和y’是当前状态的下一个状态,所以我们需要从结果反推。

由欧几里得推出,最终结果的状态为: a=f,b=0
将结果代入 ax+by=f 可得 x=1,y=0

于是可以递归反推当前 x,y ,得到同余方程的一组解。
至于通解,不详细证明。

x , y 是一组特殊解,则通解为:
x=x+tb/f
y=yta/f

扩展欧几里得的作用

扩欧的作用之一就是求逆元。
逆元定义为:当满足 a×x=1(modp) 时,x为a在mod p下的逆元。
如何求这个逆元呢?这是个同余方程,可以用扩欧。
上面的条件等价于 ax+py=1
于是我们就能用扩欧求出一组x,y,的解。

线性扩欧

这才是重点好吧。
注:不是线性求一个,而是线性求连续一段 1到n所有数的逆元。
设p=ki+r (i>r)
ki+r0(modp)
kr1+i10(modp)
i1ki1(modp)
i1pi×(pmodi)1(modp)

推导到这一步,整个式子就是只跟i和p有关了。
其中, i1 是i的逆元,这个式子就是一个递推式了。

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值