Boost dijkstra 单元最段路径示例

//整理 by RobinKin  from DevonIT

#include <boost/config.hpp>
#include <iostream>
#include <fstream>

#include <boost/graph/graph_traits.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>

using namespace boost;

int
main(int, char *[])
{
  typedef adjacency_list < listS, vecS, directedS,
    no_property, property < edge_weight_t, int > > graph_t;
  typedef graph_traits < graph_t >::vertex_descriptor vertex_descriptor;
  typedef graph_traits < graph_t >::edge_descriptor edge_descriptor;
  typedef std::pair<int, int> Edge;

  const int num_nodes = 5;
  enum nodes { A, B, C, D, E };
  char name[] = "ABCDE";
  Edge edge_array[] = { Edge(A, C), Edge(B, B), Edge(B, D), Edge(B, E),
    Edge(C, B), Edge(C, D), Edge(D, E), Edge(E, A), Edge(E, B)
  };
 
  int weights[] = { 1, 2, 1, 2, 7, 3, 1, 1, 1 };

  int num_arcs = sizeof(edge_array) / sizeof(Edge);
 
  graph_t g(edge_array, edge_array + num_arcs, weights, num_nodes);
 
  property_map<graph_t, edge_weight_t>::type weightmap = get(edge_weight, g);
 
  std::vector<vertex_descriptor> p(num_vertices(g));//前驱结点
  std::vector<int> d(num_vertices(g));    //距离
  vertex_descriptor s = vertex(A, g);  //源点是A

//从A开始计算最短路径

  dijkstra_shortest_paths(g, s, predecessor_map(&p[0]).distance_map(&d[0]));

  std::cout << "distances and parents:" << std::endl;
  graph_traits < graph_t >::vertex_iterator vi, vend;
  for (tie(vi, vend) = vertices(g); vi != vend; ++vi) {
    std::cout << "distance(" << name[*vi] << ") = " << d[*vi] << ", ";
    std::cout << "parent(" << name[*vi] << ") = " << name[p[*vi]] << std::
      endl;
  }

  return EXIT_SUCCESS;
}

//输出:

distances and parents:
distance(A) = 0, parent(A) = A
distance(B) = 6, parent(B) = E
distance(C) = 1, parent(C) = A
distance(D) = 4, parent(D) = C
distance(E) = 5, parent(E) = D

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭