全局路径规划之4.2:贪心算法、Dijkstra和A*类路径搜索算法

系列文章目录

提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加
TODO:写完再整理

文章目录


前言

在这里插入图片描述
机器人全局路径规划相关教程及博客请关注专栏:
https://blog.csdn.net/qq_35635374/article/details/138174918

本文先对贪心算法、Dijkstra和A*类路径搜索算法做个简单的介绍,具体内容后续再更,其他模块可以参考去我其他文章
深度优先搜索(DFS)、广度优先搜索(BFS)和迭代加深的DFS(IDS)是三种重要的图遍历算法,它们在解决各类问题中扮演着关键角色。DFS通过尽可能深地搜索图的分支来寻找路径或解决方案,而BFS则是逐层扩展搜索范围以找到最短路径或最近的节点。IDS结合了DFS和BFS的特点,通过限制搜索深度来逐步扩大搜索范围。它们在策略、数据结构和适用场景等方面有所不同。具体分析如下:

  1. 策略

    • DFS:采用递归或栈来实现,先访问根节点,然后尽可能深地遍历每条分支直到尽头,之后回溯至上一个分岔点。
    • BFS:使用队列来实现,首先访问起始节点的所有直接邻接节点,然后依次对这些邻接节点的未访问邻接节点进行访问,层层递进。
    • IDS:类似于DFS,但设置了深度限制,当达到限制后停止当前路径的搜索,并增加深度限制继续搜索。
  2. 数据结构

    • DFS:通常使用栈或递归调用栈来存储待访问节点。
    • BFS:使用队列来存储待访问节点。
    • IDS:使用与DFS相似的数据结构,但增加了深度参数的控制。
  3. 适用场景

    • DFS:适合目标明确且需要遍历所有可能路径的情况,如解决谜题、游戏AI决策等。
    • BFS:适合寻找最短路径问题,如网络路由协议、迷宫求解等。
    • IDS:适合在搜索深度不确定且既要考虑完整性又要考虑效率的情况下使用。
  4. 优点

    • DFS:能深入探索图的结构,适合目标明确的问题;实现简单,递归方式直观易懂。
    • BFS:能找到最短路径,适用于无权值的图;逐层扩展搜索能快速接近目标。
    • IDS:平衡了DFS和BFS的优点,能有效限制搜索的深度,避免过早深入。
  5. 缺点

    • DFS:可能会陷入深层分支,导致效率低下;对于大规模深层图可能导致栈溢出。
    • BFS:空间复杂度较DFS高,因为它需要存储整个边界集;不适用于有环的图。
    • IDS:相较于DFS和BFS,它的知名度和使用频率较低。
  6. 可能性

    • DFS:可以访问到每个节点的所有邻接节点,直至找到解或遍历完整个图。
    • BFS:从起始节点开始,逐层扩展搜索范围,直到找到解或遍历完整个图。
    • IDS:通过逐渐增加深度限制来扩展搜索范围,直到找到解或超出预设的限制。
  7. 其他要素

    • DFS:在某些情况下可能需要剪枝来优化性能。
    • BFS:在实际应用中需要考虑队列的管理以及如何高效地添加和移除节点。
    • IDS:需要合理设置初始深度和增量步长以达到最优搜索效果。

针对上述分析,提出以下几点建议:

  • 在选择遍历算法时,应考虑图的特性(如是否存在环、边的权值等)。
  • 对于大型图,要注意内存消耗和性能优化,例如通过剪枝减少不必要的搜索。
  • 在实际应用中,可以根据具体需求调整DFS和BFS的策略,比如在BFS中加入启发式函数来优化搜索方向。
  • IDS可以通过调整深度参数来适应不同的搜索场景,从而在保证找到解决方案的同时提高搜索效率。
  • 对于动态变化的图结构,应考虑实时更新遍历算法的策略以适应结构变化。

总的来说,DFS、BFS和IDS各有所长,适用于不同类型的问题和场景。理解它们的工作原理和特点,可以帮助我们更有效地设计和实现图遍历相关的算法。在实际的应用中,选择合适的算法并结合具体问题进行适当的调整,将有助于解决问题并优化性能。


提示:以下是本篇文章正文内容

系列文章目录

提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加
TODO:写完再整理

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盒子君~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值