目录
写在前面
-
总目标
总的目标是数据科学。 -
架构说明
进行两个维度的划分:
① Python及 Python 库——机器学习/深度学习——实战应用
② 数据——方法/函数——知识
第一个维度是常规维度,顺着学习的过程,由浅到深,适合做记录和小结;
第二个维度偏向于本质,适合作总结和提炼。
(也可以暂时将第一个理解为机器学习,第二个理解为数据挖掘。)
- 参考
‘Python 进阶’思维导图
‘机器学习基础’思维导图
维度一:学习由浅到深
1. Python
包括 Python 编程、Python 库、Python数据结构与算法
1.1 Python 编程
1.2 Python 常用库
-
Numpy、Pandas、Matplotlib
用一篇文章总结:matplotlib、Pandas、Seaborn 可视化 -
Seaborn
Seaborn 可视化·总章
2. 机器学习/深度学习(方法/算法)
2.1 算法/模型
2.2 Python 与 机器学习/深度学习
- Sklearn
Sklearn 学习笔记·总章 - Scipy
2.3 机器学习/深度学习 与应用
NLP
CV
3. 数学知识
3.1 概率统计
本质&框架
入门&框架
入门&知识 (1) 随机变量
入门&知识 (2)多元随机变量
入门&知识 (3) 单变量统计量期望和方差
入门&知识 (4) 多变量统计量:协方差和相关系数
入门&知识 (5) 极限思维:大数定理与中心极限定理
入门&知识 (6) 两大学派和统计推断
入门&知识 (7) 概率论的应用:随机过程、信息熵、图论
入门&知识 (8) 分布和小结
入门&知识 (9) 变量之间的关系描述
3.2 线性代数
3.3 高等数学
维度二:数据挖掘(目的/任务)
探索数据 ,并发现知识。
这个维度的思考是以数据为出发点,以(处理)数据为中心(其他都是操作数据的方法/进行数据运算的函数)。
1. 数据
1.2 数据处理
维规约
度量
2. 数据分析(观察)
参考小项目:
如何用数据分析方法剖析“猿辅导”K12课程
https://www.pmcaff.com/article/index/1400472289969280?redirect=1
PPT:猿辅导教育分析报告-知乎:木南.pdf
3. 数据挖掘(发现)
网课学习打卡
见博客栏目