Robin的技术博客导航(2020)

写在前面

  • 总目标
    总的目标是数据科学。

  • 架构说明
    进行两个维度的划分:
    ① Python及 Python 库——机器学习/深度学习——实战应用
    ② 数据——方法/函数——知识

第一个维度是常规维度,顺着学习的过程,由浅到深,适合做记录和小结;
第二个维度偏向于本质,适合作总结和提炼。
(也可以暂时将第一个理解为机器学习,第二个理解为数据挖掘。)

在这里插入图片描述在这里插入图片描述- 参考
‘Python 进阶’思维导图
‘机器学习基础’思维导图

维度一:学习由浅到深

1. Python

包括 Python 编程、Python 库、Python数据结构与算法

1.1 Python 编程

1.2 Python 常用库

2. 机器学习/深度学习(方法/算法)

2.1 算法/模型

2.2 Python 与 机器学习/深度学习

2.3 机器学习/深度学习 与应用

NLP

CV

3. 数学知识

3.1 概率统计

本质&框架
入门&框架
入门&知识 (1) 随机变量
入门&知识 (2)多元随机变量
入门&知识 (3) 单变量统计量期望和方差
入门&知识 (4) 多变量统计量:协方差和相关系数
入门&知识 (5) 极限思维:大数定理与中心极限定理
入门&知识 (6) 两大学派和统计推断
入门&知识 (7) 概率论的应用:随机过程、信息熵、图论
入门&知识 (8) 分布和小结
入门&知识 (9) 变量之间的关系描述

3.2 线性代数

3.3 高等数学

维度二:数据挖掘(目的/任务)

探索数据 ,并发现知识。
这个维度的思考是以数据为出发点以(处理)数据为中心(其他都是操作数据的方法/进行数据运算的函数)。

1. 数据

Python数据分析——数据结构

1.2 数据处理

在这里插入图片描述

维规约

在这里插入图片描述在这里插入图片描述

度量

在这里插入图片描述

2. 数据分析(观察)

参考小项目:
如何用数据分析方法剖析“猿辅导”K12课程
https://www.pmcaff.com/article/index/1400472289969280?redirect=1
PPT:猿辅导教育分析报告-知乎:木南.pdf

3. 数据挖掘(发现)

在这里插入图片描述
在这里插入图片描述

网课学习打卡

见博客栏目

优秀资源汇总

优秀连载参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值