推荐系统中评测准确率和MAE值的步骤对比

在评估推荐算法的优劣时,主要有两种评测指标,一种是top-N推荐当中的分类指标,例如准确率、召回率、覆盖率等。一种是预测评分指标,如MAE、RMSE、MSE。
这两种指标进行评估时,代码的逻辑是不同的。

分类指标

步骤:
① 从训练集中拿出一个user。
② 拿出该user正反馈的一个item。
③ 在物品相似度矩阵中,按照相似度大小排序,取最相似度的前K个item。如果这K个item中有该user已经打分的,则删除。
④ 构建字典rank{item:weight},存储相似物品及其排序权重。排序权重计算方式为两个物品之间的相似度*用户对正反馈物品的具体评分。
⑤ 重复②③④步,直到用户user的所有正反馈物品被取完,得到一个rank字典。
⑥ 对rank里面的物品,按着weight进行排序,取前N个推荐给用户user。(即TOP-N推荐)
⑦ 根据测试集中该用户打分的物品和我们推荐的N个物品,就可以根据公式,进行准确率、召回率的计算了。

预测评分指标

① 拿出测试集当中的某条数据,包括{user,item,rating}。
② 计算用户user已打分的物品的分数的加权和,即为预测评分。权重就是两个之间的物品相似度。
③ 根据预测评分和实际评分rating的差值,按照公式计算MAE等指标。

### 使用知识库训练情感分类模型的具体步骤 训练情感分类模型的过程可以分为以下几个方面来描述: #### 数据收集 为了构建高效的情感分类模型,需要大量的高质量数据作为基础。这包括但不限于预训练数据集特定于任务的微调数据集[^1]。 #### 数据预处理 在获得原始数据之后,对其进行必要的预处理是非常重要的一步。常见的预处理操作包括分词、文本清洗(如移除HTML标签、特殊字符等)、去除停用词以及其他可能影响模型表现的操作。 #### 数据分割 将整个数据集合合理地划分为三个部分:训练集用于实际训练过程;验证集用来调整超参数以及防止过拟合现象的发生;最后测试集则是在最终阶段评估模型整体性能所使用的独立样本集合。 #### 预训练与微调 利用广泛而多样的语料资源先对通用语言表示进行初步学习即所谓的大规模无监督或者弱监督下的预训练阶段完成后,再针对具体应用场景比如这里提到的情感分析方向采用标注好的小范围领域内的资料实施进一步精细化调节也就是所谓的迁移学习中的fine-tuning环节[^2]。 #### 性能评估 完成上述各步后还需要有一套完整的评测机制来衡量我们所得成果的好坏程度。对于像情感这样的分类性质的任务来说通常会考虑诸如准确率(Accuracy),精准度(Precision),召回率(Recall)还有综合考量两者平衡性的F1 Score等等多个维度来进行全面考察;而对于那些预测连续数型输出变量的情况,则更多关注均方误差(Mean Squared Error,MSE),平均绝对误差(Mean Absolute Error, MAE) 或者决定系数(R² score)[^3]。 ```python from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score def evaluate_model(y_true, y_pred): acc = accuracy_score(y_true, y_pred) prec = precision_score(y_true, y_pred, average='weighted') rec = recall_score(y_true, y_pred, average='weighted') f1 = f1_score(y_true, y_pred, average='weighted') results = { 'Accuracy': acc, 'Precision': prec, 'Recall': rec, 'F1-Score': f1 } return results ``` 以上就是基于现有文献综述给出的一个关于怎样借助已有的知识体系去培养能够识别情绪倾向类型的智能实体较为详尽的方法论介绍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值