在深度学习学习中,有许多常用的评估指标用于衡量模型的性能。下面是一些常见的指标及其定义和说明。
关键名字解释:
TP表示真正例(True Positive),即模型正确预测为正例的样本数量;
TN表示真负例(True Negative),即模型正确预测为负例的样本数量;
FP表示假正例(False Positive),即模型错误地将负例预测为正例的样本数量;
FN表示假负例(False Negative),即模型错误地将正例预测为负例的样本数量。
1. 准确率(Accuracy)
准确率是分类问题中最常用的评估指标之一。它表示分类正确的样本数占总样本数的比例。准确率越高,模型的性能越好。然而,当数据集存在类别不平衡问题时,准确率可能会失真,因为模型可能倾向于预测数量更多的类别。
准确率的计算公式如下:
准确率 = (TP + TN) / (TP + TN + FP + FN)
准确率指示了模型在所有样本中分类正确的比例。较高的准确率表示模型具有更好的分类性能。
2. 精确率(Precision)
精确率是用于衡量二分类问题中正例预测的准确性。它表示预测为正例的样本中实际为正例的比例。精确率高表示模型在预测为正例时较少出现误报(将负例错误地预测为正例)。
精确率的计算公式如下:
精确率 = TP / (TP + FP)