gcd,lcm函数的使用

gcd(greatest common divisor)的意思是最大公约数,要求两个数的最大公约数,可以用递归(自己调用自己)的形式来写。给它设置的出口是如果后一个数字等于0,那就返回前面的数字。否则,返回后面的数,前面的数对后面的数字取余数。递归代码如下:

int gcd(int a,int b){
    if(b==0){
        return a;
    }else{
        return gcd(b,a%b);
    }
}

上面的代码就是手写gcd。用了辗转相除法。如果b不等于0(说明还没有除完,那么就再次来除)

如果b等于0了,那就说明它已经除完了,b数字已经不能再除了。我们就返回a。

接下来就是lcm(least common multiple)注意,如果要手写lcm,则必须先些gcb函数,因为lcm函数中须要用到两个数的最大公约数。

我们知道a*b=gcd(a,b)*lcm(a,b);

a*b=gcd(a,b)*lcm(a,b)那么,lcm(a,b)=a*b/gcd(a,b)

所以,lcm函数只要返回a*b/gcd(a,b)就可以了。代码如下:

​
int lcm(int a, int b){
    return a*b/gcd(a,b);
}

当然,还有可以直接调用的gcd函数,要包含头文件<algorithm>,代码如下:

__gcd(i,j)

以上就是C++中的gcd和lcm函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值