关于L0,L1,L2正则化

本文介绍了机器学习中的L0、L1和L2正则化,重点讨论了L1与L2正则化的概念、优化特性以及它们如何影响模型的稀疏性和过拟合。L1正则化倾向于产生稀疏解,而L2正则化则让解更平滑。适用场景方面,L1常用于特征选择,L2用于防止过拟合,Elastic Net结合两者优势。
摘要由CSDN通过智能技术生成

机器学习中,关于模型的策略,有期望风险最小化,和结构风险最小化
结构风险最小化,是在考虑误差尽量小的同时,模型的复杂度也不能太高,否则容易造成过拟合。
因此,结构风险最小化的目标函数就是最小化下面这个公式:
在这里插入图片描述
规则化函数Ω(w)也有很多种选择,一般是模型复杂度的单调递增函数,模型越复杂,规则化值就越大。比如,规则化项可以是模型参数向量的范数。然而,不同的选择对参数w的约束不同,取得的效果也不同,但我们在论文中常见的都聚集在:零范数、一范数、二范数、迹范数、Frobenius范数和核范数等等。

L0范数与L1范数

L0范数是指向量中非0的元素的个数。如果我们用L0范数来规则化一个参数矩阵W的话,就是希望W的大部分元素都是0。L0范数很难优化求解。
L1范数和L0范数可以实现稀疏,L1因具有比L0更好的优化求解特性而被广泛应用

L1与L2正则化

我们假设损失函数是凸函数,则L1和L2加入损失函数后的图像:
在这里插入图片描述
未加入正则化项之前,我们的优化目标是得到等高线最小的点,也就是最内侧的紫色圆圈;
当加入了L1࿰

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值