神经网络属于梯度下降法中的一个,会涉及到数学中求导求微分,但不会涉及太深;
初学神经网络会遇到一个cost方程,以下图展示的是cost方程的过程,但该过程在数学中并不成立,这样化简只是为了更好地理解,画出误差曲线:
从图中可以看出,cost误差最小的时候正是cost曲线最低的地方;照蓝色梯度线的方向继续下降,当线躺平,找不到下降的方向,这时找到w参数的最理想值,简而言之,找到了梯度躺平的点;但是神经网络并不是这么简单,w不止只有一个,如w有两个,可以只用三D图像来展示:
在通常的神经网络中,误差曲线并没有这么优雅;不同的w初始化的位置带来不同的下降区域,不同的下降区域又会带来不同的w的解,全局最优解固然重要,但我们的手中大多都是局部最优解,所以用局部最优也可以完成任务。
基于Tensorflow-神经网络梯度下降
最新推荐文章于 2024-08-24 10:56:49 发布