基于Tensorflow-神经网络梯度下降

神经网络属于梯度下降法中的一个,会涉及到数学中求导求微分,但不会涉及太深;
初学神经网络会遇到一个cost方程,以下图展示的是cost方程的过程,但该过程在数学中并不成立,这样化简只是为了更好地理解,画出误差曲线:在这里插入图片描述在这里插入图片描述
从图中可以看出,cost误差最小的时候正是cost曲线最低的地方;照蓝色梯度线的方向继续下降,当线躺平,找不到下降的方向,这时找到w参数的最理想值,简而言之,找到了梯度躺平的点;但是神经网络并不是这么简单,w不止只有一个,如w有两个,可以只用三D图像来展示:
在这里插入图片描述
在通常的神经网络中,误差曲线并没有这么优雅;不同的w初始化的位置带来不同的下降区域,不同的下降区域又会带来不同的w的解,全局最优解固然重要,但我们的手中大多都是局部最优解,所以用局部最优也可以完成任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值