基于tensorflow-神经网络CNN卷积神经网络

使用传统的神经网络处理图片时会出现权值太多,计算量太大,需要大量的样本进行训练,而CNN卷积神经网络通过感受野和权值共享减少了神经网络需要训练的参数个数,一个的神经元只连接到图片的某一个部分。CNN的采样操作:
在这里插入图片描述
55的图片用一个33的卷积进行采样,卷积的计算就是对应格中的数字乘右下角的数字之和;卷积核可以认为是一个滤波器,不同的卷积核得到的特征图是不一样的,不同的卷积可以对不同的图片进行采样,得到不同的特征图。
卷积神经网络中会有卷积层和池化层,池化层有最大池化max-pooling和平均池化mean-pooling;卷积操作有SAME PADDING(给平面外部补0)和VALID PADDING(不会超出平面外部);池化操作也有SAME PADDING(可能会给平面外部补0)和VALID PADDING(不会超出平面外部)。
利用CNN卷积神经网络构建一个手写数字识别的网络:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist=input_data.read_data_sets("MNIST_data",one_hot=True)
#批次大小
batch_size=100
#计算一共有多少个批次
n_batch=mnist.train.num_examples // batch_size

#初始化权值
def weight_variable(shape):
    initial=tf.truncated_normal(shape,stddev=0.1)   #生成一个截断的正态分布
    return tf.Variable(initial

#初始化偏置值
def bias_variable(shape):
    initial=tf.constant(0.1,shape=shape)
    return tf.Variable(initial) 
 
 #卷积层
def conv2d(x,W):
    #x:输入一个tensor,[batch(批次),in_height(高),in_width(宽),in_channels(通道数:黑白为1,彩色为3)]
    #W:滤波器(卷积核)也是一个tensor,[filter_height(滤波高),filter_width(滤波宽),in_channels(输入通道数),out_channels(输出通道数)]
    #strides是步长,strides[0]=strides[3]=1,strides[1]代表x方向的步长,strides[2]代表y方向的步长
    #padding有两种值:“SAME”或“VALD”
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

#池化层
def max_pool_2x2(x):
    #ksize窗口大小,ksize[0]=ksize[3]=1,ksize[1]和ksize[2]可调整大小
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#定义placeholder
x=tf.placeholder(tf.float32,[None,784])  #28*28的大小
y=tf.placeholder(tf.float32,[None,10])

#改变x的格式转为4D的向量[batch,in_heigth,in_width,in_channels]
x_image=tf.reshape(x,[-1,28,28,1])

#初始化第一个卷积层的权值和偏置值
W_conv1=weight_variable([5,5,1,32])   #5*5的采样窗口,32个卷积核从1个平面抽取特征
b_conv1=bias_variable([32])           #每一个卷积核一个偏置值        

#把x_image和权值向量进行卷积,再加上偏置值,应用于relu激活函数
h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1=max_pool_2x2(h_conv1)

#初始化第二个卷积层的权值和偏置值
W_conv2=weight_variable([5,5,32,64])    #5*5的采样窗口,64个卷积核从32个平面抽取特征
b_conv2=bias_variable([64])             #每一个卷积核一个偏置值

#把h_pool1和权值向量进行卷积,再加上偏置值,应用于relu激活函数
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2)

#初始化第一个全连接层的权值
W_fc1=weight_variable([7*7*64,1024])    #上一层7*7*64个神经元,全连接层1024个神经元
b_fc1=bias_variable([1024])    #1024个结点

#把池化层2的输出扁平化为1维
h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])

#求第一个全连接层的输出
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)

#Keep_prob用来表示神经元的输出概率
keep_prob=tf.placeholder(tf.float32)
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)

#初始化第二个全连接层的权值
W_fc2=weight_variable([1024,10])   #1024个神经元,10个分类
b_fc2=bias_variable([10])

#输出
prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)

#交叉熵函数
cross_entropy=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))

#优化器
train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)    #学习率是10的负4次方

#结果保存在布尔列表中
correct_prediction=tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))

#准确率
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())   #初始化变量
    for epoch in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys=mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})     #Keep_prob表示Dropout
            
        acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
        print("Iter"+str(epoch)+",Testing Accuracy="+str(acc))

运行结果:
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值