Tensorflow基于卷积神经网络(CNN)的手写数字识别

本项目使用Tensorflow构建卷积神经网络(CNN),对MNIST数据集进行手写数字识别。经过5000次训练,测试集准确率高达95%。文章详细介绍了CNN结构和代码实现,并提供了完整的GitHub链接。
摘要由CSDN通过智能技术生成

一、简介

本项目在Tensorflow平台下利用卷积神经网络(CNN)实现了对mnist数据集(28*28)的手写数字图片的识别,通过5000*50个样本训练后,对500个样本进行测试,准确率可以达到95%左右。本文完整代码:https://github.com/iapcoder/cnnMnistRecognition

二、mnist数据集简介

MNIST(Mixed National Institute of Standards and Technology database)是一个计算机视觉数据集,该数据集被分为两部分:60000行训练数据集和10000行测试数据集,其中训练集拆分为55000行训练集和5000行验证集。该数据集共70000张手写数字灰度图片,其中每一张图片为28*28个像素点,其中数字的范围为0-9,每张图片都有一个对应图片上数字的标签 。

60000行数据的训练集是一个形状为[60000, 784]的张量。在张量里的每一个元素都表示某张图片某个像素点的强度值,其值为0-1之间。

60000行训练集的标签采用One-hot编码表示,比如数字2表示只在第2维度(从0开始)为1其他维度为0 的10维向量([0 0 1 0 0 0 0 0 0 0]),因此标签是一个[60000, 10]的矩阵。

三、卷积神经网络结构介绍

神经网络(neural networks)的基本组成包括输入层、隐藏层、全连接层和输出层。而卷积神经网络的特点在于隐藏层分为卷积层、激励层和池化层。通过卷积神经网络的隐藏层可以减少输入的特征,其过程可以形象地描述为:

各层的作用 

  • 输入层:用于将数据
这是一个基于TensorFlow框架实现的手写数字图像识别代码,使用的是卷积神经网络CNN)模型。 首先,导入需要的库: ``` import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data ``` 然后,定义一些常量和超参数: ``` learning_rate = 0.001 training_epochs = 15 batch_size = 100 n_classes = 10 dropout = 0.75 # 输入数据的维度 n_input = 784 # 28*28 ``` 接着,定义占位符: ``` x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.float32, [None, n_classes]) keep_prob = tf.placeholder(tf.float32) ``` 定义卷积层和池化层函数: ``` def conv2d(x, W, b, strides=1): x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME') x = tf.nn.bias_add(x, b) return tf.nn.relu(x) def maxpool2d(x, k=2): return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME') ``` 接下来,定义卷积神经网络模型: ``` def conv_net(x, weights, biases, dropout): x = tf.reshape(x, shape=[-1, 28, 28, 1]) # 第一层卷积层 conv1 = conv2d(x, weights['wc1'], biases['bc1']) conv1 = maxpool2d(conv1, k=2) # 第二层卷积层 conv2 = conv2d(conv1, weights['wc2'], biases['bc2']) conv2 = maxpool2d(conv2, k=2) # 全连接层 fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]]) fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1']) fc1 = tf.nn.relu(fc1) fc1 = tf.nn.dropout(fc1, dropout) # 输出层 out = tf.add(tf.matmul(fc1, weights['out']), biases['out']) return out ``` 然后,初始化权重和偏置: ``` weights = { 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])), 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])), 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])), 'out': tf.Variable(tf.random_normal([1024, n_classes])) } biases = { 'bc1': tf.Variable(tf.random_normal([32])), 'bc2': tf.Variable(tf.random_normal([64])), 'bd1': tf.Variable(tf.random_normal([1024])), 'out': tf.Variable(tf.random_normal([n_classes])) } ``` 接着,定义损失函数和优化器: ``` pred = conv_net(x, weights, biases, keep_prob) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) ``` 定义评估模型的准确率函数: ``` correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) ``` 最后,训练模型: ``` mnist = input_data.read_data_sets('/tmp/data/', one_hot=True) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # 训练循环 for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) # 遍历所有批次(batch) for i in range(total_batch): batch_x, batch_y = mnist.train.next_batch(batch_size) # 运行优化器 sess.run(optimizer, feed_dict={x: batch_x, y: batch_y, keep_prob: dropout}) # 计算损失值 avg_cost += sess.run(cost, feed_dict={x: batch_x, y: batch_y, keep_prob: 1.}) / total_batch # 显示每一轮训练的结果 if epoch % 1 == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)) # 计算测试数据的准确率 print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels, keep_prob: 1.})) ``` 这样,一个基于TensorFlow框架实现的手写数字图像识别代码就完成了。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值