深度学习对抗攻击的学习资料

本文列举了一系列关于深度学习对抗攻击的重要资源,包括 Ian Goodfellow 和 Nicolas Papernot 的cleverhans博客,Szegedy等人揭示神经网络易受欺骗性的研究,以及Goodfellow等人对对抗样本产生原因的探讨。此外,还提到了Olah的解释神经网络工作原理的研究和几篇重要的综述论文,以及Kaggle竞赛中对抗攻击防御方法的探索和发展方向。
摘要由CSDN通过智能技术生成

1、该领域最具影响力的学者Ian Goodfellow和Nicolas Papernot写的cleverhans博客:http://www.cleverhans.io/

2、2013年,Google研究员Szegedy等人在题为《Intriguing properties of neural networks(神经网络有趣的特性)》的论文中指出了神经网络的两个有趣的特性:其一是神经网络中包含语义信息的部分并不是在每个独立的神经元,而是整个空间;其二是神经网络学习到的从输入到输出的映射在很大程度上是不连续的。这篇论文更重要的意义是验证了将图片做适当修改后能欺骗深度学习模型的可能性,并给出了相应的训练方法,从此学术界展开对对抗攻击的进一步研究。https://arxiv.org/abs/1312.6199

3、Olah近期的一项关于展示神经网络如何工作的研究——The Building Blocks of Interpretability:https://distill.pub/2018/building-blocks/ 有进一步理解对抗样本产生的原因。

4、最近的一篇总述性论文《Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey》

5、影响力最大关于对抗样例的研究当属GoodFellow等人2014年发表的《Explaining and harnessing adversarial examples》,中文常翻译为『对抗性例子的解读和掌握』,文中提出了产生对抗攻击根本原因的猜测,即深度神经网络在高纬空间中的线性特性已经足以产生这种攻击行为——而非之前人们猜测的神经网络的复杂性,同时在这个假设前提

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值